Version Control with Subversion

For Subversion 1.7

(Compiled from r4959)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.7: (Compiled
from r4959)

by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Publication date 2015/01/09 05:04:48
Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Ben Collins-Sussman, Brian W. Fitz-
patrick, C. Michael Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licens-
es/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

| 20) (=110« RO PP PP P PP PO PPPPPPPPPPPPPPPRt xii
PrELACE 1oieiiiiiiiiiiee e Xiv
WHhat IS SUDVETISION? ...ceieiiiiieieeeeeee eeeeens Xiv
Is Subversion the Right TOOL?uuuuu s XV
SUDVETSION'S HISTOTY ... e xvi
SUDVETrsion's ATCRILECLUTEceviiiiiiiiiiiiiiiiiiiiiiiiitiitieieeettet ettt ettt et teteeeteeeeeeeeeeeeeeeeeeeeeeeeeseseaes xvii
SUbVETSiON's COMPOIENLSeevetrrerererurererereeeeeeeteeeteeeeeeteerererereeereeeeeaereeerererereeeatereaeaereermmmmme xviii
What's New in SUDVETSION .oeiviiiiiiiiiiiiiiiiiiiiieieeiee et e e e e e e e e e e e e e e e e eeeeees xviii

BN a5 o TP P PP PP PP PP PPPPPPPPPPPPPPPRY Xix
HOW t0 Read ThiS BOOK ... s XX
Organization Of ThiS BOOKccciiiiuiiiiiriiiiiiiiiiiiiiee e eeetiiiiese e s e e eeetetiiieeeeeeeetesaansssesesesesessssnnnnessssanens xxi
BN TS S ToTo) Q) E i T xxii
ACKNOWIEAZIMENTS ...eiiiiiiiiiiiineieieiiiiiiiieee e eeeeettiire e e s eeetetttaaaeaaeseeeeetssasanssssesesessssssnsnssesesessssssnnnesesaaans xxii
1. FUNAAMENTAL COMCEPES ..vvvvvutiiiiiiiiiiiiitiiiiiiit ettt ssssssssssssnsen 1
Version Control BaSICSccceieiiiiiiiiiieieieee e 1
THE REPOSITOTY ..uneeiieiiiiiiiieeee ettt tiiiiiee e e ee ettt ee e e eeeetttetaa e e e eeeetaassaaaaaeeeeeteessanasssseeesneessnnnnnsesaees 1

The WOTKING COPY tevvvruunrreeiiiiiiiiiiiieeeeeeetttiiiiaaeeeeeetetusnnnssaessseeesssnssnsessssesssssssssnsssssessssssssssessssaaes 2
Versioning MOGELSeeeeeeeeeeeieieieeeeeeeeeeee e 2
Version Control the SUDVErSion WYcccuuuuiiieiiiiiiiiiiiiiie ettt eetetitise e e s e s eeeearaaaaseseseeessssnnnns 7
SUDVErsion REPOSITOTIESuceeiiieiiiiiiiieieee ettt eeee ettt e e e e e e teeabaee e e e eeerteenaaaeseeeeeeeensnnnannnss 7
REVISIONS 1euituiiiiiiiiiieeiie ettt ee ettt e eteete et essesteannesnsenessnessnessnesnssnessnessnsssnesnnessnessnessnsssnsssnessnesnns 7
Addressing the REPOSITOTYccoeeuiuuuiiieiieiiiiiiieee et eeee ettt s e e eeettenbe e s e eeeeerennnaeeeeaas 8
Subversion WOrking COPIEScccceiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeeeeeeeee ettt ettt eee et et et et e e e e eeeeeeeeeeeeeeeeas 10
SUITIITIATY +eeeieeeinieetiinne ettt e ettt e et tteue s e ettna s eettaae e eetnne s eeeenaeseeannaeseennnneseerennessennnneseennsneseeennnneennnneneen 15
2. BASIC USAZE ..eeivnuriiiiieeiiiie ettt ettt e e ettee e ettt e e ettt e ettaa e etaaa e etaaa e eataa e atana e eataaaeatanaeatanaeeeranans 16
5 (5] 0 1 PSP U TP UPPPPPTPPRORN 16
Getting Data into YOUT REPOSIOTY ...oeivruuiiiiiiiieiiiiiiie ettt ettt e ettt e e e et e e eteae e e enenaeeeeeenneeanennnns 17
Importing Files and DIr€CTOTIESuuuuuuuuueiiiiiiiiiiiii s 17
Recommended RePOSItOTY LaAYOULccceeiiiiiuiiiireeieiiiiiiiiiiieeeeeeettiiiiieneeeeeeeeereasesnaeseseessnsssnnnnesssaans 18
WHat's IN @ NAIE? .ouuniiiiiiiiiiiiee e eeiieeeeeeiee e ettt eeeeeett e eeettteeeessneeesssaneesssnnaeesssnneessrnnaeesssnnneeees 19
Creating @ WOTKING COPY tvvvvuruererereriiiiiiiinereeeeetitiiieaeeeseeeteetmensssesesessssssmssssesssesssmssmssnessssessssmmsssneseses 19
BaSIC WOTK CYCLE ... es 21
Update YOUT WOTKING COPY +.uueeereiiriiiiiiiiiieeeretiiiiiiiiereeeeeeettteeinnesseeeessmsssssseesssesssmsnsssssesssesssssssnns 21
MaAKE YOUT CRATNEZES ...ttt s 22
REVIEW YOUT CHANZES ...oeiieiiiiiiiiiieeeeieiiiiiiiiiineeeeeeettttiiseeeeeeettsanassseseseeessssssassnsesseasssssssssnsssssseanes 23

FIX YOUT IMISEAKES ...eivviieiiiiiiieeeiiiiieeeeeiie e e etteeeeeeteeeeeeteeeesataeeesanteeesananeeessnnneesssnneesssnanaessnnnnns 27
ReSOIVE ANY CONTICES ...iviiiiiiiiiiiiiieiieiiiiiiiieee ettt e s e e e eetttaiss e s e e eeetaabsaaasseseeesensssnnnnnssesanens 28
Commit YOUT CRANZES ..eivvueiiiiiiieiiiiiiieeieiiiieseettieeeettieeeetttieeeetteaeeeettansseeseannseesrnnsseessnnnseesrnnaseens 35
EXamining HISTOTY ...cevuuiiiiiiiiiiiiiiie ettt ettt e e et e e e eteae e e e etaae s e eataneeeatenanseanenanseenennnseanennns 36
Examining the Details of Historical Changesc.ccccceiiiiiiiiiiiiiiiie, 36
Generating a List of Historical Changescevviiiiiiiiiiiiiiieneieeeiiiiiiine e e eeeeteriiieeeseeeeeessennnnnnss 38
BrowSing the REPOSITOTYuuuuuueiieei s 40
Fetching Older Repository SNapSNOLS ...cuuuuuuieiiiiiiiiiiiiiieee ettt eeeeeeieise e e s e e eeaebbaieseseaanenns 42
Sometimes You Just Need t0 Clean UPccceiviiuiieieiieiiiiiiiieeeeeeeeeeeiieeeeeeeeeesesesnnaeeeeeesssssnnnnaeaaeaeens 43
Disposing 0f @ WOTKING COPY ..uueeeeeeriiiiiiiiieeeeeiitiiiiiiieeeeeeeetttiiiieeseseeeeesusensssssseessessssssssessssessesees 43
Recovering from an INterruptionoooiviiiiiiiiiiiiiiiii 44

iii

Version Control with Subversion

Dealing with Structural CONTIICESveriiiiiiiiiiiiiiee et eeeeeetb e e e e e eeeeaaaaaaneeseeanens 44
An EXample Tree CONTICE ..uuuuueeeiiieiiiiiiieee e eeeeeeteeee e e e e e e e e taaeeeeeeeeeeeasennaaeeseesseeesnnn 45
SUITIITIATY +.eeetneetnieti ettt et e ettt e et e etaa e taa e etaue e etaaeeeae e etaaeaasaeseeneetansatnnsetenesesnnseennsennnssesnneeennnns 50
3. AQVANICEA TOPICS ..eevvrrrrnuieeeeeeeiriiiiiiiaeeeeeeeetteeenaaaeeeeeeeassnnnaaasesssssssnnnsaaseessssssssnnnseesssssssssnnnnsessssssssssnnnnnnns 51
REVISION SPECITIETS ...eiiieiiiiiiiiiieiiiiiiiitiieiee ettt s e et ettt et sse s e s e e eeeataaa s eeseeaeanssassnsesesaeasssesnsnnnsesas 51
REVISION KEYWOTAS ...vvvevuviieriiiieiititiitittettteteteteteteeeeeeaeeteeeeeeeaeeeeeaeaatet et etetataaeteteteteeeeaaeeseeeeeeasaeeees 51
REVISION DAtES ..uivuiiiiiiiiiieiiieiiie i e e ettt eee ettt ete et esteesteesneesnessnessnessnessnsssnsenessnessnsssnesnnesnnssnneen 52

Peg and Operative REVISIONSuiieiieiiiiiiiiiiieie ettt e e eeetettiee e e e e eeteeeeaieseeeeereeesnnaaeseeeeeeeesnnnnns 54
3 0] 015 y 1 T PP P PR PPPPRT PP 57
WY PTOPETTIES? ..eeeeeiiiiiiiiiiiiiiiiieieeeee ettt ee et e e ee e ettt et e eeeeeeeeeeeeeeeeeeeeeeteteeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeees 58
Manipulating PrOPEITIESceeveieiiiiiiiiiereretiiiiiiiiiieee et eeeetitiiiaaeseeeeettrarasseseseeesesssnsnssseseessessssnnnnnnss 60
Properties and the Subversion WOrKflOWcocooioiiioiiie e 63
Automatic Property SETHINGcccuueiiiiiiiiiiiiiie ettt eetee e e e et e e eeeee e e eenea e 65

File POTTADILITY coeeeeeiiiiiiiiiiiiiiieeeeee et e e e e e e e e e e e e e 66
File CONTENT TYPE tevvvneeeeiiriiiiiiiieeeeeeetttiiiiiaeeseeeetttrunnssaeseseessesssnsssesessessessssssssesesssessssssnssesssasans 66

File EXECULADIIILY 1oeeeiiiiiiiiiiiiiiiiiiiieee e 68
End-of-Line Character SEQUEIICESuuuuueereiieeiiiiiiiiereeeeetttriiiiaaeeeeeeetemunnnsesseeeesrmssssnsesssseessssnnnns 68
IgNoring UNVErSIONEd TEEITISuuueueii s 69
KeYWOrd SUDSHTULIONueiiiiiiiiiiiiiieie ettt eettiise e e e e e ettt ata s e e s eeeeaeaaasasseseseeassssssnnnnsesesesssssnnns 73
SPATSE DITECLOTIES ..eeetrrrrnuiieeeeeeeiitittieee et eetttttataeeeeeeetteenaaeseeeeetteenaaaasseeeeeseeessnnnssesseereeessnnnssseeeereees 76
LIOCKITIE +vvuueeeeieeiiiiiiieee et e eeetttieese s e e eeettatta i aeeeeeeeteassaaaaaeseeeeasssassssnsseseeesssssssssnssseeesessssssnnnesesenesssssnnns 81
Creating LOCKS ...oiiiieiiiiiiiie ettt e e e e ettt e e e e e et ttetbae s e e eeeeteesnanaeeeeeeeeaesnnnaennnns 83
DiISCOVETING LOCKS ...uueeiiiiiiiiiiiiiieeeeeeetiiiiiiieeeeeeettttiiaaeseeeeetesuenssaesssseesesssnssnnssssessssssssssnssssesesssens 85
Breaking and Stealing LOCKSuuuuuuuu s 86
Lock COMIMUIICALION ..eeeiiiiiiiiiiiiiiiiiiiiiiiiiie ettt eeeeaeas 88
EXternals DEfiNItIONS ..u.ueiiiiieiiiiiiieeeiiiiieeeetteeeeeetee e e ettt eeeeeetteeestsaeeessstneeessnnneesssnaeesssnneeessnnneesssnnnns 89
CRANIGELISES ..uuuieiiieiiiiiiiieee ettt e et e e et ettt e e e s e e eeetataaa s aeseeeeaaasasassnnsesaeassssnsssnnseseeesesssssnnnsesesesesssens 95
Creating and Modifying ChangeliStsceeuiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieieeereeeeeeerereeeeereeerererereeeeereeeee 96
Changelists AS Operation Filtersuuiieeiiiiiiiiiiiiiiieeeeeeeetiiiiieee e e e eeetriiiieseeeseeeesrananneseseeessssnnnns 98
Changelist LIMItATIONSceeeiereeiiiiiiiieeeeeeeeeeiiiieeeeeeeeesttseenaaeeeeeesreessnnnaaeesesssessssnnaseesessessssnnnnnnns 99
NELWOTK MOGEL ...cevvviiiiiiiiiiiiiiiiieiitetttetetetet ettt eeeteret ettt et e e e et e et et et et et ee et e e ea e et e eeeeeeeeeeeaeeeeeeeeeeeeneees 100
Requests and RESPONSES ...ccciiiiiiiiiiiiiiiiiiiiititieiettieteteteteteteteteteteteeeteeeeeteteteteeeeetereeeeeseeeeeseseeeeeee 100
Client Credentialse.eeeueueeeeeueieiiieieieteietetetereteeetereeetererereeereeereeererereeeeereeeeererereresesaresenerenenes 100
SUITIITIATY «eeieeiiieeeiiie ettt et ettt e e e et e e e eten e e e tene s eetenaeeetenaeeeetenasseetenasseanenasseerennnseerennnseerennnseenennnns 104
4. Branching and METZINGcuuuuueeeeiiiiiiiiiiiiiieeeeeetttiiiiareeeeeettttannsseeeseeestsssssssesesseessssmsssasssssesssssssssnseses 105
WRhat's @ BranCh?cooouniiiiiiii et e ettt e e et e e ettt e e e e eat e essataeesssanneesestneesesnnaesennn 105
USING BIANCRHES covuviiiiiiiiiiiiiiiiiie ettt ettt ese e s e e e e ettatasseseeeaeaaettasseseseaesesssssnnnssseessesssnnnnnnnns 106
Creating @ BranChcooooiiiiiiiiiie ettt e e e e ettt e e e e e e eeb e e e e eereees 107
Working with YOUT BIanChcceiiiiiiiiiiiiiiieeiiieiiiiiiire s eeeeeeeeiise e e s e eeeentaeiisesseseeesnssssnnnnsesaaans 108

The Key Concepts Behind Branchingccceeeeeeeeieeeieieieieeeeeeeeeeeeeeeeeeeee e 111
BASIC METZING evuuniiiiiiieiiiiiiee ettt ettt e et e e e et e e ettae e e eetaa e eettaae s eeataneeeetaneseeenannseeanannsseensnnnseeennnnns 111
CRANZESELS ..eetetiiiiiiiiitiiiiitittiet et ete ettt ete bttt e beb ettt aeete b et eeeee b et et et et st et stst st st st st s b s bsbsssbsbsssbsbssebnbsnnnnne 112
Keeping a Branch in SYIICcceiiiiiiiiiiniiiiiiiiiiiie ettt seeetetiisse s e s e e eeeeaaaeesseeeeenssanannnnss 112
Reintegrating @ BranChciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieitieeeeeeeeeree e e et eeeeeeeeeeeeaeseeereeeseeeeeaereaeraaes 117
Mergeinfo and PIEVIEWS ...ccuuuuuuiieririiiiiiiiiiieeeeeeetttiiiiieeeseeettetreeasseeseeeressssnssnsesesesenssssnsnsesesaeanes 120
UNAOING CRATIZES ...vuveviiiiiiiiiiiiiiiiitiittiiitttttttt bttt sttt sttt sttt sttt sttt sttt ts sttt sttt esaeebeaeseeennnnnes 123
Resurrecting Deleted TEEIMSueiiiiiiiiiiiiiieeeeeeeeiiiiiiiereeeeeeeteratiiseeeeeeeetasrsnsseesseeeessssnsnnssessaeanes 124
AQVANCEA METZING ...oeeiiiiiiieieeeeetiiiiiieee e e e ettt ee e e e e eeettteaa e e e eeeeetetsnaaesaeeeeeeesennaesseeeseeessnnnansseeeeeees 126

iv

Version Control with Subversion

CRETTYPICKITIZ «evvveuieeeeitiiiiiiiiieee e et ettt e e e e e e eeettbiieseeeeeeeeetataasaeeeseeeaesssnssnssseeessssssnnnnsesseeeensens 126
Merge Syntax: FUull DISCIOSUIEccceeiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e eeeeeeeees 128
Merges Without MeETZEINT 0 ...ccuuuuuuieeiiiiiiiiiiiiiieieeeeeiiiiiiee e eeetttiiree e e e e eetaetraseseseeenasssannnesesaans 129
More 0n Merge CONTHCES ...uiiiiiiiiiiiiiiiiiiiiiiiiiiiieitetteeee ettt ettt ettt ee et ee ettt te e et et e eeeeeeeeeeeeeeeasaees 131
BlOCKING CRANZES ...vuueieiiiiiiiiiiiieeeeeeettiiiise e e et eettttiiseeeseeetaettaasaseseeasenssasnsnssseeesesssssnnnsesesaranes 132
Keeping a Reintegrated Branch ALIVEccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieteeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseees 134
Merge-Sensitive Logs and ANNOTAIONSccvvtiuuuiierrriieiiiiiiiineeeeeeeeriiiiianeeeeeeernraineeseseeesessnnns 135
Noticing OF IZNOTING ANCESITY .evuuuieereeiiiiiiriieeeeeeetttiiireeeeeeeettertaeeeeeeeeteernaaeaeeeeeereersnnneseaeaees 137
METZES ANA MOVES ..eeeviviiiiiiieeeeeeeeiiiiiiieeeeeeetttrunnsaeeeeeestesusnssssssseesesssssssnsssssessssssssssnsssssessssssnns 138
Blocking Merge-Unaware CHENESuueuuuereueuerereiireiirererererererereeerereeerererereeerereaererereee——————. 139

The Final Word on Merge TTraCKINGcccuvuuuuiiereiiiiiiiiiiiieeeeeeettiiiiineeeeeeesersinnnneeeseeessssmsnnneess 139
TTAVETSING BIATICHESeutiiieiiiiiiiiititttie ettt ettt sttt bttt bttt et essbebnnnnnees 140
T2 PP PP PP 142
Creating @ SIMPLE TAZ «oceverruiieeiiieiiiiieeee et e e ettt e e e ee et ttebbae e e e eeeeeeesanaa s eeeeeeeenens 142
Creating @ COMPLEX TAFoeveriiiiiiiiiiiierereeetitiiiiaeeeeeeetearteanaeeseeetessrssssasesseesessssssnnsessssssnssensnnness 143
Branch MaiNtenanCeueeeiiiuieeeeiiiieeeeeiiieeeeetiieeerttteeesesteeesestaeesssnnaeessstnaessssnaessssnreeessnnneesssnnnnns 144
REPOSITOTY LAYOUL ..cevvuiiiiiiieiiiiiiee ettt ettt e e e tte e e eteae e e ettae e e eeaaaeeeeeenaeseeeennnseenennns 144

DAt LIfEHIIMES covvuuniiiiiiieeiiiiie et e ettee e et eeeeeetee e ettt e e eeeat e eesestaeeessstaaeessstneessnnneesssnneeesssnnnns 145
Common Branching PatterTsuuuuuieeriiiiiiiiiiiiieeeeeeeetiiiiiiese e e e e eeetttiiiseeeeeeeetassaansassseeesssssnsnnnsessaenaes 146
Release BramnChiesccoiviiiiiiiiiiii et e et e e e et e e e e e e e e eeaeeeesasaeeesanaeeesennanns 146
FEature BIanCRESsccouuiiviiiiiiiiiiiie et et e e et e e et e e st e e saaeesaressaneesaneessaeessnnesenns 147
VENAOT BIANCREScooveiiiiiiiiieeiiee ettt ettt e e et e e e e eat e e e eeateeeeasaaeeeastnaeesssnneeessntneessnnnnns 148
General Vendor Branch Management Procedurec.cooeieeiiiiiiiienereieeiiiiiiiinneeeeeeeniiiiinneseeeennns 149

532 I (oY= T I G 11 3 o) A USRS 150

To Branch or NOt 0 BIalCh?covvuiiiiiiiiiieiiiieiiiie e eee et et e e et e e et eeraaeesaaeeraaessnnessnneennns 152
SUITIINIATY +.uvetueeetnietiii ittt eetie e et eeteeettuetaueeatueetnnetsnesasansennesetsnssesnneeenssensssernnseesnssennnsesnssessnssesneennns 153
5. RePOSITOry AAMINISIIATION tvvvuueeieriiiiiiiiiiiiiiee et eeetiiiiire e e e e eettiiiisre e e e eeeeerttaaaeeseeesesssnnnsnseseeessssssnnnnsesaeans 155
The Subversion Repository, DEfINEdccceviiiiiiiieiiieeeiiiccie e e eeeeeeeee e e e e eeeeeerse e e e eeeerrannanaeeeaeans 155
Strategies for Repository DEPIOYIMENTcceiuiuuiiiirriiiiiiiiiiiieeeeeeeettiiiiieeeeeeeeeerrenieeeeeseeessssnnnssesssaneees 156
Planning Your Repository Organizationcccceiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee, 157
Deciding Where and How t0 Host YOUT REPOSIOTY evvvvvvuuieeiiieriiiiiiiiinereeeeeeiiiiiineseeeeennnannnneeeens 159
ChoOSING @ DAtA STOTE ...ceevveiiuiieeeeeeeiiiiiiieeeeeeeeeettteieaeeeeeeeeateseaaaeseeeessessnnnnaaaeessessssnnnasasseeeenes 159
Creating and Configuring Your REPOSITOTYccuvuuuuieriiriiiiiiiiiiieerereetiiiiiiieeseeeeeeeriianeeseeeeessmssnnnseseseans 163
Creating the REPOSTLOTYuuuuuuiiii st ssesesesas 163
Implementing RePOSItOry HOOKS ...cvuuuuuiiiieiiiiiiiiiiiiiereeeeeiiiiiiieeeeeeeeeeerieiineeseeeessnsannnnnesesessssssnnns 164
Berkeley DB CONFIGUIATIONuuvururiririiiiiiiiiiitiiititeiateteieteietebebetetebabebebebeaeaabsssbabsbeaebabebesssasessnenes 166
FSFS CONTIGUIATION tetvtuuiiiieiiiiiiiiiiiiiieeseeeeetitiiiieeeeeeeetttuiaaseseseeettesrnnssaseseeesesssssnnasesseasssssnssnnnens 166
RePOSITOTY MAINTENATICEuuiieeiiiiiiiiiieeeeeeetiitiiie e e e eeettteteaeeeeeeeretenrana e eeeereeesennaeseeeereeessnnnnssseeeranes 166
An Administrator's TOOLKIE «...ceeeeeieeieieeeieeeeee e e 166
Commit Log MeSsage COTTECTIONceeeeiuruuuieereeeeiiieiiiieeeeeeettteiiiieeeeeeeeeeteennaeeeeeeeeeerennnnneseaeaens 171
Managing DISK SPACE ..vuuuuueerriiiiiiiiiiiiieeeeeeetitiiiire e e s eeetetiiaiaeeeseeetettranaaseseeeressssnnnsssesasessssnnnnnnns 171
BErkeley DB RECOVETYuuuuuuuiiie s 175
Migrating Repository Data EISEWNETEccceiiiiiiiiiieeiiiiiiiiiiiiiee e ceeeetniiire e e e e eeeeenaiieeseseeeeennnns 176
Filtering RepoSitory HIStOTY ..cccevviiiiiiiiiiiiiieeieeeeeeeee e 181
RePOSITOTY REPLICATION ovvuviuieeiiiiiiiiiiiiiiieeeeeeeitiiiiiee e e e eeetetiieieeeeseeeeertaasanaeseeesesssssnnsnseseessesssnns 184
REPOSIEOTY BACKUP ... 192
Managing RepoSitory UUIDSc..eiiiiiuereiiiiieriiiiie ettt ettt e eetiieeeeteaeeeetanaseresnsseresnnnsesenns 194
Moving and Removing REPOSITOTIES ...ceeeieriieiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeee e e e e e e e e e e e eeeeeeeaeaeees 195

Version Control with Subversion

SUITIITIATY +.eeeniieitieeit ettt ettt et e et e et e eta e e taa e etane s etaa s etae s etaaeeeanestanesataaetansetenesennsseeneseennseennnenenes 195
6. Server CONTIGUIATION ...ccciiiiiiiiiiiiiiiiiiiiiiiieitteee ettt ettt ettt ettt ettt et ettt et ettt et et et et et et et et e e et et e e e e e e eeeeeeeeeaeeaeaaes 196
OVEIVIEW ..euniineiineetneiteeeteeteeteetessessnesnnssnessnessnessnsssnessnessssnssnsssnsssnsssnessnssnnssnessnessnessnsssnesneesnessneesns 196
Choosing a Server Configurationooovviiiiiiiiiiiiii e 197
TRE SVIISEIVE SEIVEL ...uuiivrneirrieeriiertieeerteeerteertneertteessaeerteesseessneesssnesssneesseessseessmeesssnesssneessnns 198

1374 8 15 (SR oA S = N 198

The APAChe HTTP SEIVETuuceiiiiiiiiiiiiiiereeeeeetttiiiiiaeeseeeeettrenessaeseseeesssssnssesessessessssssnsesssseessses 198
ReECOMIMENAATIONS ...evvuuniiiiiieeeiiiiieeeiiieeeeetteeee ettt eeeesattaeeesetteeessnnaeessstaeesssnneesssnaeessnnnaeesssnnnns 199
SVINSEIVE, A CUSLOIM SEIVET ..euuiuniiiuiieiietteeteeteeueeteeneeteenestesnestesnesnesnesnesnessesnessssnesnssnesnesnesnesnesnssnesnnen 200
INVOKING ThE SEIVET ..ceeeeieieeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e eaeeeas 200
Built-in Authentication and AUthOIIZAtIONcoevuiiiiiiiiiieiiiie e eeeeeeraeeraaes 204
Using SVNSErve With SASLcciiiiiiiiiiiiiiiiiiiiiiiititieieieeeee ettt teteeeeeeeeeeeeetteeteteeeretteeseeeeeeeeeses 206
TUNNEING OVET SSH .iiiiiiiiiiiiiiiiiiiieee ettt e e e e et ettt eae e s e eeeeatatasaaeeeeeaseasnssnnaessseessssssnnnnnnnns 208

SSH Configuration TTICKScceviiiiiiiiiiiiiieieeee e 210
httpd, the APAche HTTP SEIVET ...ccvuuuuiieeiiieriiiiiiiieeeeeeeetttiiiieeeeeeeeetereanssesseeeeesmsmssnsessssssssrsmssnnssssaees 211
PrOTEQUISITES ...eeeieiiiiiiiiieee ettt e e ettt e e e e e et ettt e e e e eeeettenaaa e eeeeeeeaennaaaseeeeeseeassnnnannnns 212
Basic Apache Configurationuuuueieeieeiiiiiiiiiiieeeeeeeeitiiiiieeeeeeeeettriaieeeeeeeeeesrennnnneessseessssnnnns 212
Authentication OPHIONSceeieiiiiiiiiiiiiiiiiiiiiiiiiieiee ettt e ettt ettt etatetterteteeaeeeeereees 214
AUhOTIZAtION OPLIOIIS ..uviiiiiiiiiiiiiieeeeetitiiiiiire e e eeetttiiirreeeeeeetttataaaseeeseeeeessssssnssessseesssrsssssnnsesaeans 217
Protecting network traffic with SSLcooiiiiiiiiiiiii 220
EXETA GOOGIES ... e e e s e s e e e s s e e e e s e e e s e s e e e e e e e e e e e e e e nes 222
Path-Based AUthOTIZATIONouuiiiiiiiiiiieiiiiee e e et e e e et e e e et eeesenaeeeeeanteeessnaneeessnnnns 230
High-1eVEl LOZZINE oeevviiiiiiieiieiiiiiiiiiiee st e eeetttiisee s e e eeetttati e e eeseeatatasasssseseeesesssannnnssseeessssssnsnnseseeesanes 236
Server OPHIMIZATIONoiiiieieiiiiiee ittt e e e ettee s eetteeeeetaaeeeeeanansearennnseesennnseasennnseesennneeerennnns 237
Data CaCRING ...ceeeeiiiiiiiiierieeiiiiiiiiee ettt iee s e e e e etettaa i saeeeeeetetatataaeseseeanssnssnnnsseseeesssssnnnnnsnns 238
Network Compression Of DAta ..cceeeeeeeeeeeeeieeeeeeeieeeeeeeeeee e 238
Supporting Multiple Repository Access Methodsuuuuieieiiiiiiiiiiiiiiiereeeeiiiiiiiee e eeeeeeiiiieeeeseeeeeennens 239
7. Customizing Your Subversion EXPETIENCEuuuuuuuuuuuuuuuuiiatetieiaieee s 241
Runtime Configuration ATEAceeeieieeiiiiiuiieeeeeeettttiiiiereeeeeeeettenieseeeeeeessssmsssseesseessssmsnnnnsssssessessens 241
Configuration Area LAYOULc.euiviiiiitiiiiiiiitiiitiiitrtteietetereeetetererereeetetetetteteeteeeeeeteteteeeeeeeeeeeeeee 241
Configuration and the Windows ReZISITYcceviiiiiiiiiiiiiieeiieiiiiiiiiine e eeettriisne e e eeeenraiieeeeeaans 242
Configuration OPLIONS ...eeeeieiiiiiiiiiiiiieieieieieeeeeeeeeteteteeeteeeeeteteeeteteeeteteeetereeereeeterereeereeeeeeeeeeeeeeeees 244
LOCALIZATION .vvuivineiiiieeiiieeiii e eeee et ettt e et e et e e et e e st eeaaneeataeesaaesaanesstnessanesssaeessanessanessnneessneessnnersen 250
Understanding LOCALEScceevviiiiiiiiiiiiiiieee e 250
SUbVErsion's USE Of LOCAIESccuuueeiiiiiieeieiiiieeeeiiieeeetiieeeetiieeeeatieeesttaeeesaanneeasennaesssnnneeessnnnns 251
Using EXternal EAITOTS ...oeeeeeeeeeeeeeeeeeieieeeeeeeee s 252
Using External Differencing and Merge TOOIScceeeiiiiiiiiiiiiiieeeieeeiiiiiiiineeeeeeeenriiiinneseeeeesnsesnnnnesees 253
EXEEINal diffoeiiiiiiiiiii et e ettt e e e et eeeeateeeeaaa e eerraeeeaaraaaaes 254

| D5 (s w o -1 B b1 5 o S OSSO UUPPPUURRURt 255
EXEEINAl TNETEE 1oeeiiieieiiiiiiiiiiiiiee e 256
SUITIITIATY +.eeenieinieiti ettt et e et ettt e et e eta e e taa e taae e eta s eeae e etaneetaaeetanesatanetnasetenssennsseeneseennssennneeenes 257
8. EMbedding SUDVETSIONccceiiiiiiiiiiiiiccecce e 258
Layered LIDIary DESIZIcccvuuuuuuiiereriieiiiiiiiieeeeeeetttiiiiieeeseeeeeetianssseseseeessssmnnsesssessssssmsssssessesssssmnns 258
REPOSITOTY LAYET eevvniieieeeeeiiiiiiieee ettt e ettt e e e e e et ttetbae s e e e e eeeeessanaseeeeeeeaensnnnassseaaeeaes 259
ReEPOSITOTY ACCESS LAYET ...eeevueiiiiiieieiiiieeetiieeeettieeeettieeeettaaeeetttaeeeteaaesereaaessereanesseresnneenenns 263
(01113 1 L 2 £ (PO P PPN PPUPPPPPRRRN 264
USING The APIS ...oiiiiiiiiiiiiiee ittt e e ettt tiiiee e e e e e eetttaaa i aaeseeeeeststassseseseeseasssssssnsssseesessssssnnnssseenens 265
The Apache Portable Runtime LIDIaryccooeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee, 265

Version Control with Subversion

Functions and Batomnscciiiiiiiiiiiiiie e e e e e aee e e et aee e e e et e e eeaaeeeeaanaeeaaannaeaaeenans 266

URL and Path REqUITEMENLScccceiiiiiiiiiiiieieeeiiiiiiieee e eeee ettt e e eeereeenne s e e e eeeeeeennaeeeeeeeeees 266
Using Languages Other Than C and C+eeeiiiiiiiiiiiiiineeeeeeeiiiiiiieeeeeeeeeeiiiiineseeesesssesnnsesesaaens 267
(00T (SI F: T1 01) LTS TP PP PPPPPPPPPPPPPPPRE 268
SUITIITIATY +.eeeeniteinie ettt ettt et ettt e teae e eta e e tae e etaa s etaa s etae e etaneseaaestaneatnaetnnsetanesennsseeneseennssennneeenes 274
9. Subversion Complete REEIENCEuvvuueeieiieeiiiiiieeee e e eeeettieee e e e eee e ettt eeeeeeeesesaesnnnaaaseaesssssnnnnnaaeeaeeees 275
svn—Subversion Command-Line CHENTccuvieiiiiiiiii i eete e e et e e e et e e ertaeeeesaaanaaes 275
37200 0 o) (o) o - J PO PPRTT PP 275

SVIL SUDCOIMIMAIIAS ..vuiiviniiiieiiiieeriieeetieetieertieertieerrieertaeertaeersneesssnesssneersaeessaeesssneesseesseessnneses 283
svnadmin—Subversion Repository Administrationcceeeeeeieriiiiiiiiiiiiiiiriieieeeiereeeeeeeeeeeeeeeeeeeeeeenns 361
SVNAAINIT OPHIOTIS 1evuuiiriiiiiiiiiiiiiieeeeeeetitiiiieeeeeeeetetttaaaaeeeeeeeeessanassseseeesessssssnnsssesesesssssnnnnssesanans 361
svnadmin SUDCOMMEANASeeiiiiiieiiiiiiiee ettt eeiiee e e et reeeeeet e eeeetteeesestneeesssaneessenneeessrnneaesens 363
svnlook—Subversion Repository EXaminationcceeeeeeeeeeeiiieeieiiiee 384
1537201 (070) Q0] 07 1o o - U 384
SVNIOOK SUDCOMIMAIIAS ..uuivvniiiiiiiiieiiieiiiie ettt et ee et eeeteerteeraneertanerstesstneessneessneersaesssnesnen 386
svnsync—Subversion Repository MIITOTINGccuuuuueeeeereriiiiimiiieeeeeeetiieiireeeeeeeeeeeniaeeeeeeeeeeennaaaenenns 406
SVIISYIIC OPLIOIIS tevuuneiiiinnreiiiuierettiuetetteueeettuaeeetteaasettenessertsneseresneseresnnnseresnnnserssnssseresnnsseneen 406
SVNSYNC SUDCOMMEATIAS evvvuuiieeeeeiiiiiiiiiieeeeeeettieiiiee e e e e eeettttaaeeeeeeeeeetrenaaaeseeeeeeeeessanaeseeeeeseeennnn 408
svnrdump—Remote Subversion Repository Data Migrationeeceerereeeeieiieiinerereeeneeurnnsneeseeeeanns 416
SVIITAUIMND OPLIOIS eeeiiiiititiitiiiittttttttttttetttttttetttttteeeaataetttetetetttetatttttatttetatatetatatetetetareeasararesenenes 416
SVNTdUmMpP SUDCOMMANAS ...eevvviiiiiiiererereiiiiiiireeeeeeettriiiereeeeeeeetrataaseseeeeessrssnnsnaseseessersssnnsesesaaans 417
SVNSEIVE—CUSTOM SUDVEISION SEIVETccevuiiiiieiieeeiiieeetieeetieeetieeetteeesteestneessnesssaesssessneessnnessnanesses 420
SVIISETVE OPLIOIIS ..uieiriiiiiiiiierieiiiee ettt e ettt e e ettt e e ettt e e eetaaeeeetanaseataneneeatenesseeeennsseanensneeenennns 421
svndumpfilter—Subversion History Filteringccoiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 422
SVNAUMPTIEET OPLIOIS ..uuviiiiiiiiiiiiieeeeeietiiiiiiieee e e e eteetiiiaaeeeeeeetttaaaneseeeeesersssnsnasesesesssssssnnnsess 422
svndumpfilter SUDCOMMANAScceeiiiiiiiiieie e i e e e e e e e e e et e e e e e eeeeersennaeeeeaanns 423
svnversion—Subversion Working Copy Version Infoooeoeiiiiiiiiiiiiiiiieeeeeee, 428
mod_dav_svn—Subversion Apache HTTP Server Modulecccoeeeiieiiiiiiiiiieeeieeeeeiiceee e eeeeeveeeeenn. 430
mod_authz_svn—Subversion Apache HTTP Authorization Moduleccoeviviiiiiiiiiiinnnriieniniiinnnnnnn. 433
SUDVETSION PTOPEITIES .oevvuuiiiiiieiiiiieeieiiiee et eetiee e ettt e e ettt e s eettaeseeteaaseeesnnsseeesnnssesesnnnsernsnnnsens 434
VErsioNed PTrOPETTIEScevviiiiuiiereiiieiiiiiiiee e et eeetitiiiiaeeeseeettnuaaaseseseeesesssnssnessseessessssssnnsssesasanes 434
UnNVErsionNed PrOPEITIES ...cccvvuuuuiieeeeeeeeiiiiiiieeeeeeeeertteniaaeeeeeserersnnaaaseeeseesssnnnaaaesessssssssnnasasesasenes 435
REPOSITOTY HOOKS ..evvvviiiieieeiitiiiiiiiiieeeeeeetttiiiieeeeeeeeetettaiaaaeeeeeeestsnnanssesesesesssssssnsesssessssssssnnsssssesensses 436
A. Subversion QUICK-STAIT GUIAEceeeriiuieeiiiiiieeeieiiieeeeeiieeeeeeteeeestteeeesetteeesssaaeeessnnaeeessnnaeesssnnneesssnnnns 446
INSAlling SUDVETSION .evvvvuuiieiiiiiiiiiiiiiieereeeeeiiiiiieeeeeeeettttaaiaeeeeeeeressseaassesseesesssssssnsssssesessssssnnnesesaeens 446
5 5Toq B o YTTe M NV o) | R 447
B. SUDVEISION fOT CVS TUSEIS ..evuiviieiiiieiiiieeeiiieetieertieeeteertieeestnersteeesteessneersneesssessteeerseessseessseesssnesssoeeses 450
Revision Numbers Are DIifferent NOWueeeiiiiieeeiiiiieeeeiiiieeeeeieeeeeeteeeesenteeesenaeeeessnneeesenaneeessnnns 450
DITECLOTY VETSIONS ..uuieiiiieiiiiiieeeitiiee ettt et ettt e eettteeeettuaeseettaaeeeettsaeseentnneseeesnneseersnnnseeesnnnseessnnoseenen 450
More DiSconnected OPETatiONSu.u.eeeeeeeeiiiiiiiereeeeeeettteniaraeeeeeeerrennnnaeeaeeesessssnnnaaeesessssssssnnasaesesseses 451
Distinction Between Status and UPAAtecuuuuuiiiiiiiiiiiiiiiiiieeeeeeeiiiiiiieeeeeeeeettiiiieseseeeeeessensnnsessseeeens 451
R 7 1 £ 452
UPAALE ..ieeeiiiiiiieee ettt e e e et ettt eee e e e e eeetttbta e aeeeeeeeaasassssnsseseeessssssnnnnssseeessssssnnnnseseeessesssnnn 452
Branches and TAZSuuceeeiieeiiiiiiiiiieeeeeeeeeiiieieeeeeeeeettteeaaseeeeeseeatssnnasaaseeessssssnnnnaseseesssssssnnnnseeeeesnnes 453
Metadata PTOPEITIES tuvuuuueeriiiiiiiiiiiiiie et e etetitiiiie e e e eeeteettaiseeeseeeeeeataaasseseeeeessssssssnnseseeessesssnsnnsesesaeanes 453
(070) 1111 (e g =T T0) 111 (o) 1 KRR SO UPTPUR 453
Binary Files and Translationc.uuuueeeiiiiiiiiiiiiine ettt e eeeeetieiiineseseeeesssunssnsseseeessesmsnssnsssaeens 453
VeErsioned IMOAUIESceeevvuneieiiiiieeeiiieeeeitteeeeteee e ettt eeeeeateeessataaeessstneesssaneesssnnaeesssnnaeesssnnaeessnnnnns 454

Version Control with Subversion

AUTNENTICATION ..ivvviiiiiiiiieeiiiee e e e et e e rte e st e s et eesaneeataeessaesaaeesannesstneesrneessaeessnnessnns 454
Converting a Repository from CVS t0 SUDVEISIONeueveiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeereeeeeeeeeeerereeeeeeeee. 454

C. WEDDAYV and AULOVETSIONITIE ..vuuuuuereieriiiiiiiiieereeeeettiiieiaeeeeeeetemtennsseeseeesesmssmnnsessssesssssmnsssnssssessssssssnnnes 456
WAt IS WEDIDAV? ..ottt ee e ettt ee e e e et e e e e eetteeeesaaa e eesssaaaeesssnnaeesssnnseesssnnaessssnnneesssnnneees 456
AULOVETSIONIIIE «.eeiruiieiiiiieteetiie e ettt e ettt e ettt e eettaaseetaaaeseeteannseeeeannseeesnnsseeesnnsseresnnnseresnnnseeesnnnsenes 457
Client INtErOPErabIlItYeeeeeeeeeeeeeeeeeeee e 458
Standalone WebDAV APPLICATIONSuuuuuuuiiiiiii e 460
File-Explorer WebDAV EXTENSIONS ..ceeeeeeieieieeeeeieieieieeeeeeeieeeeeeeeeseeeeeeeeesesesesesesesesasssssssasasssasasnnns 461

WebDAV Filesystem Implementationccoeeeeeeeiiiiiiiinerereieiiiiiiiieeeeeeeeeeiieiieeeseeeeesusnnnnsesesaeens 463

| DI /0] 0) ' T4 1 S 464
316 1) QU O U SNSRI 470

viii

List of Figures

1. SUDVETSION'S AICRITECTUTE tovvvuiiieiiiiiiiiiiiiiie ettt eeeett e e e e e eeteaaaa e e e s eeeeeesrsananesesaeessssssnnnnsssaaans xvii
1.1. A typical CHENT/SEIVET SYSTEIM coeeeeeeeeeeieieeeieieeeie et ee e e e ee e e eeeeeeee e e s e eeeeeeseeesseesesasasesasesasasasasannns 1
1.2. The Problem 10 aVOId ..ccvuuuuueeiriiiiiiiiiiiiee ettt e e et e ett ettt e e e e e eeetetaaaaeeeeeeaeessssnsssasssseesesssssnnnsseseessssees 3
1.3. The lock-modify-unlock SOIULIONeeiiiiiiiiiiieie e e e e e e e ee et eee e e e e eeeeraannaeeeeeeseeesnnns 4
1.4. The copy-MOodify-MErge SOIULIONccoiiviiiiiieriiiiiiiiiiiiie et e eeettiiiere e e e eeettrttareeseeeeearsanannseseeeassesssnnnnsessaens 5
1.5. The copy-modify-merge solution (CONtINUEA)eeeveririiiiiiiiiiiiiiiiiiiiiiiieieiereetrerereeeeeeeeeeereeereeeeereeeeeeereeeee 6
1.6. Tree ChangEs OVET TIINIE ...cciiviiuuiiieiiieiiiiiiiiieee et eeteettiiiaseeeeeeetttataassesseeeessssnssnnnseseeessssssnsnnseseeessssssnnsasesaeans 8
1.7. The 1epOSItOry'S fIlESYSIEIM ...uvetiiiiiiiiiiiiiiiiiiiiiiiiittiitet ettt ebetebebeaebebebebebebebasebebabebebasssssesssesesannsenes 11
4.1, Branches of deVEIOPIMENToviiiiiiiiiiiiiiee ettt eeeettiere e e e e eeteratisseeeeeeeeaaaasansesseeassssssnnnnssssaans 105
4.2. Starting rePOSItOTY LAYOULceeiiiiiiiiiiiei ettt e e e e e et tee e e e e eeeneeennaaeseeeeenenes 106
4.3. RePOSILOTY WIth TEW COPY tevvrriruuieereiiiiiiiiiiiieeeeeeetiiiiiee e e e eeetetttaiaseeeeeeeestranasaesseeeassssssnnneseseeesrsssnnnnns 108
4.4. The branching of one file's NISTOTYieeiiiiiiiiiciee e ee e e e e e e e e e et e e e e e e e seeasnnaeeaeaans 109
8.1. Files and directories in twWo diMenSIONSuueieeiiiiiiiiiiiiieieeeeeettiiiiiee e e e e eeeetieiereeeeeeeertaaanseeeseeessssnnnns 261
8.2. Versioning time—the third dimension!ccccoiiiiiiiiiiiiiii, 262

ix

List of Tables

1.1. REPOSILOrY ACCESS URLS ..ceiiuiiiiiiieiiiiiieeeiiie ettt ettt eeettee e ettt e e eetta e ettaaaseetsnanseeasnanseresnnnsenssnnnsereen 8
2.1. COMIMON 10Z TEQUESTS eeevrruuuieeeieiiiiiiiieiee et ettt ere e e e eeetttetta e eeeeeeteensaaaseeeeereessnnaesseeeseeessnnnnnsseeeesees 38
4.1. Branching and merging COMMANASccuuuuuuirrreiieiiiiiiiiieeeeeeettiiiireeeeeeeterrrnenaeseeeeesemmsnnsasessessesssees 153
5.1. Repository data StOre COMPATISONeeuuuuuiireriieiiiiiiiiiee e e eeettiiieee e e e eeettttteee s e eeeetteanaaeeseeeeeeeeesnnanennes 160
6.1. Comparison of SUDVETISiON SEIVET OPTIONSuuuuuuuueiiie e 196
C.1. CommON WEDDAYV CHEINTSccevvieiiiiiieeeiiiieeeeeiiieeeeetteeeeetteeeeeetteeeeessteeeesssneeesssnnaeesssneeesssneeesssnanaees 458

List of Examples

4.1.
5.1.
5.2.
5.3.
6.1.
6.2.
6.3.
6.4.
6.5.
7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
8.1.
8.2.
8.3.

Merge-tracking gatekeeper start-commit hoOK SCTIPT ..ccvvvvueiiiiiiiiiiiiiiiiiiine et eeeeriiee e e e eeeeeeee 139
txn-info.sh (reporting outstanding tranSactions)ccuuuuuuiieieeeeiiiiiiiiie e e e eeeeeeiree e e e e eeeeerrenaeeeeeaeeenes 173
Mirror repository's pre-revprop-change hooK SCIIPtceeiiiiiiiiiiiiiinriiriiiiiiiieree e eeeeerreiisee e e eeeenriaannnes 186
Mirror repository's start-commit hoOK SCTIPL «....uuueueiei e 186
A sample svnserve launchd job definitioncceeviiiiiiiiiiiiiiieiiicciiiree e eeee e seeeeeees 203
A sample configuration fOr ANONYIMOUS ACCESS ...eveverrrrrerrrrrererirererererererererrrerererererererereea———————————————————.. 219
A sample configuration for authenticated ACCESSuvuuuuireiiiiiiiiiiiiiie it eeeeerrsre e e e eeneraanes 219
A sample configuration for mixed authenticated/anonymous aCCESSueverurrrerererererererererereeereeeeenns 219
Disabling path checks altOZEThETuiiiiiiiiiiiiiiiieee ettt eeeettaiise e s e s eeesasabaaneseeaaes 220
Sample registration entries (.reg) fileeuiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieierree e 242
QEETWTAD. DY +vvvveeereeeettiiiiiie ettt ettt iee e e e et etetttaa e aeeeeeteettanasseseseeessssssssnsseseeessnsssnsnnseseeesessssssnnsesssananes 254
LG A g | o X oY: Y AU 254
Lo TR 21 000 o) AU U PP UPUPPPRPRR 255
L6820 21 o o | USSP USSR 256
INIETZEWT AP PY evverernnernnrernnrenneeenesennneetnnetensesnssesnsetsnestsnetenesennsemnnsetsnstsnseensemneetsnsetenesesnesesnesenes 256
1002 o4 L =1 0 1 o | APPSO PP P PUPPPPPPPRRRRPPPRPRE 257
USINg the TePOSITOTY JAYET ovvvuuiieiiiiiiiiiiiiiiieee ettt eeeeettiere e e e e eeeerata e e e s eeaeaassanssseseeaeessssnnnnnnns 268
Using the repository layer With PYthomnueeuiiiiiiiiiiiiii e 270
A PYLhON STATUS CTAWIET ..uuuunieiiiiiiiiiiiiiee s eeeeetiiiieeee s e e eeetttiieseeeseeetaessaaaaseseeasssssnnssnssssseessssessnnnssssanans 272

Xi

Foreword

Karl Fogel
Chicago, March 14, 2004.

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people actually ask,
but of the questions the FAQ's author wishes people would ask. Perhaps you've seen the type before:

Q: How can I use Glorbosoft XYZ to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our
patented office groupware innovations. The answer is simple. First, click on the File menu,
scroll down to Increase Productivity,then...

The problem with such FAQs is that they are not, in a literal sense, FAQs at all. No one ever called the tech
support line and asked, “How can we maximize productivity?” Rather, people asked highly specific questions,
such as “How can we change the calendaring system to send reminders two days in advance instead of one?” and
so on. But it's a lot easier to make up imaginary Frequently Asked Questions than it is to discover the real ones.
Compiling a true FAQ sheet requires a sustained, organized effort: over the lifetime of the software, incoming
questions must be tracked, responses monitored, and all gathered into a coherent, searchable whole that reflects
the collective experience of users in the wild. It calls for the patient, observant attitude of a field naturalist. No
grand hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed
most.

What I love about this book is that it grew out of just such a process, and shows it on every page. It is the direct
result of the authors' encounters with users. It began with Ben Collins-Sussman's observation that people were
asking the same basic questions over and over on the Subversion mailing lists: what are the standard workflows
to use with Subversion? Do branches and tags work the same way as in other version control systems? How can
I find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of
2002 to write The Subversion Handbook, a 60-page manual that covered all the basics of using Subversion.
The manual made no pretense of being complete, but it was distributed with Subversion and got users over that
initial hump in the learning curve. When O'Reilly decided to publish a full-length Subversion book, the path of
least resistance was obvious: just expand the Subversion handbook.

The three coauthors of the new book were thus presented with an unusual opportunity. Officially, their task was
to write a book top-down, starting from a table of contents and an initial draft. But they also had access to a
steady stream—indeed, an uncontrollable geyser—of bottom-up source material. Subversion was already in the
hands of thousands of early adopters, and those users were giving tons of feedback, not only about Subversion,
but also about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and
chat rooms incessantly, carefully noting the problems users were having in real-life situations. Monitoring such
feedback was part of their job descriptions at CollabNet anyway, and it gave them a huge advantage when they
set out to document Subversion. The book they produced is grounded firmly in the bedrock of experience, not in
the shifting sands of wishful thinking; it combines the best aspects of user manual and FAQ sheet. This duality
might not be noticeable on a first reading. Taken in order, front to back, the book is simply a straightforward
description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative
configuration, some advanced topics, and of course, a command reference and troubleshooting guide. Only when
you come back to it later, seeking the solution to some specific problem, does its authenticity shine out: the

Xii

Foreword

telling details that can only result from encounters with the unexpected, the examples honed from genuine use
cases, and most of all the sensitivity to the user's needs and the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion. Sometimes
the precision with which it anticipates your questions will seem eerily telepathic; yet occasionally, you will stum-
ble into a hole in the community's knowledge and come away empty-handed. When this happens, the best thing
you can do is email <users@subversion.apache.org>and present your problem. The authors are still there
and still watching, and the authors include not just the three listed on the cover, but many others who contributed
corrections and original material. From the community's point of view, solving your problem is merely a pleasant
side effect of a much larger project—namely, slowly adjusting this book, and ultimately Subversion itself, to more
closely match the way people actually use it. They are eager to hear from you, not only because they can help you,
but because you can help them. With Subversion, as with all active free software projects, you are not alone.

Let this book be your first companion.

xiii

Preface

“It is important not to let the perfect become the enemy of the good, even when you can agree on
what perfect is. Doubly so when you can't. As unpleasant as it is to be trapped by past mistakes,
you can't make any progress by being afraid of your own shadow during design.”

—Greg Hudson, Subversion developer

In the world of open source software, the Concurrent Versions System (CVS) was the tool of choice for version
control for many years. And rightly so. CVS was open source software itself, and its nonrestrictive modus operan-
di and support for networked operation allowed dozens of geographically dispersed programmers to share their
work. It fit the collaborative nature of the open source world very well. CVS and its semi-chaotic development
model have since become cornerstones of open source culture.

But CVS was not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter
Subversion. Subversion was designed to be a successor to CVS, and its originators set out to win the hearts of
CVS users in two ways—by creating an open source system with a design (and “look and feel”) similar to CVS,
and by attempting to avoid most of CVS's noticeable flaws. While the result wasn't—and isn't—the next great
evolution in version control design, Subversion is very powerful, very usable, and very flexible.

This book is written to document the 1.7 series of the Apache Subversion™" version control system. We have
made every attempt to be thorough in our coverage. However, Subversion has a thriving and energetic develop-
ment community, so already a number of features and improvements are planned for future versions that may
change some of the commands and specific notes in this book.

What Is Subversion?

Subversion is a free/open source version control system (VCS). That is, Subversion manages files and directories,
and the changes made to them, over time. This allows you to recover older versions of your data or examine
the history of how your data changed. In this regard, many people think of a version control system as a sort
of “time machine.”

Subversion can operate across networks, which allows it to be used by people on different computers. At some
level, the ability for various people to modify and manage the same set of data from their respective locations
fosters collaboration. Progress can occur more quickly without a single conduit through which all modifications
must occur. And because the work is versioned, you need not fear that quality is the trade-off for losing that
conduit—if some incorrect change is made to the data, just undo that change.

Some version control systems are also software configuration management (SCM) systems. These systems are
specifically tailored to manage trees of source code and have many features that are specific to software develop-
ment—such as natively understanding programming languages, or supplying tools for building software. Sub-
version, however, is not one of these systems. It is a general system that can be used to manage any collection of
files. For you, those files might be source code—for others, anything from grocery shopping lists to digital video
mixdowns and beyond.

'We'll refer to it simply as “Subversion” throughout this book. You'll thank us when you realize just how much space that saves!

Xiv

Preface

Is Subversion the Right Tool?

If you're a user or system administrator pondering the use of Subversion, the first question you should ask your-
self is: "Is this the right tool for the job?" Subversion is a fantastic hammer, but be careful not to view every
problem as a nail.

As afirst step, you need to decide if version control in general is required for your purposes. If you need to archive
old versions of files and directories, possibly resurrect them, and examine logs of how they've changed over time,
then version control tools can do that. If you need to collaborate with people on documents (usually over a net-
work) and keep track of who made which changes, a version control tool can do that, too. In fact, this is why
version control tools such as Subversion are so often used in software development environments—working on
a development team is an inherently social activity where changes to source code files are constantly being dis-
cussed, made, evaluated, and even sometimes unmade. Version control tools facilitate that sort of collaboration.

There is cost associated with using version control, too. Unless you can outsource the administration of your
version control system to a third-party, you'll have the obvious costs of performing that administration yourself.
When working with the data on a daily basis, you won't be able to copy, move, rename, or delete files the way
you usually do. Instead, you'll have to do all of those things through the version control system.

Even assuming that you are okay with the cost/benefit tradeoff afforded by a version control system, you
shouldn't choose to use one merely because it can do what you want. Consider whether your needs are better
addressed by other tools. For example, because Subversion replicates data to all the collaborators involved, a
common misuse is to treat it as a generic distribution system. People will sometimes use Subversion to distrib-
ute huge collections of photos, digital music, or software packages. The problem is that this sort of data usually
isn't changing at all. The collection itself grows over time, but the individual files within the collection aren't
being changed. In this case, using Subversion is “overkill.”* There are simpler tools that efficiently replicate data
without the overhead of tracking changes, such as rsync or unison.

Once you've decided that you need a version control solution, you'll find no shortage of available options. When
Subversion was first designed and released, the predominant methodology of version control was centralized
version control—a single remote master storehouse of versioned data with individual users operating locally
against shallow copies of that data's version history. Subversion quickly emerged after its initial introduction
as the clear leader in this field of version control, earning widespread adoption and supplanting installations of
many older version control systems. It continues to hold that prominent position today.

Much has changed since that time, though. In the years since the Subversion project began its life, a newer
methodology of version control called distributed version control has likewise garnered widespread attention
and adoption. Tools such as Git (http://git-scm.com/) and Mercurial (http://mercurial.selenic.com/) quickly
rose to the tops of the distributed version control system (DVCS) ranks. Distributed version control harnesses
the growing ubiquity of high-speed network connections and low storage costs to offer an approach which differs
from the centralized model in key ways. First and most obvious is the fact that there is no remote, central store-
house of versioned data. Rather, each user keeps and operates against very deep—complete, in a sense—local
version history data stores. Collaboration still occurs, but is accomplished by trading changesets (collections of
changes made to versioned items) directly between users' local data stores, not via a centralized master data
store. In fact, any semblance of a canonical “master” source of a project's versioned data is by convention only,
a status attributed by the various collaborators on that project.

There are pros and cons to each version control approach. Perhaps the two biggest benefits delivered by the
DVCS tools are incredible performance for day-to-day operations (because the primary data store is locally held)

20r as a friend puts it, “swatting a fly with a Buick.”

http://git-scm.com/
http://mercurial.selenic.com/

Preface

and vastly better support for merging between branches (because merge algorithms serve as the very core of how
DVCSes work at all). The downside is that distributed version control is an inherently more complicated model,
which can present a non-negligible challenge to comfortable collaboration. Also, DVCS tools do what they do
well in part because of a certain degree of control withheld from the user which centalized systems freely offer—
the ability to implement path-based access control, the flexibility to update or backdate individual versioned
data items, etc. Fortunately, many wise organizations have discovered that this needn't be a religious debate,
and that Subversion and a DVCS tool such as Git can be used together harmoniously within the organization,
each serving the purposes best suited to the tool.

Alas, this book is about Subversion, so we'll not attempt a full comparison of Subversion and other tools. Readers
who have the option of choosing their version control system are encouraged to research the available options
and make the determination that works best for themselves and their fellow collaborators. And if, after doing
so, Subversion is the chosen tool, there's plenty of detailed information about how to use it successfully in the
chapters that follow!

Subversion’'s History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement for CVS.
CollabNet offered? a collaboration software suite called CollabNet Enterprise Edition (CEE), of which one com-
ponent was version control. Although CEE used CVS as its initial version control system, CVS's limitations were
obvious from the beginning, and CollabNet knew it would eventually have to find something better. Unfortu-
nately, CVS had become the de facto standard in the open source world largely because there wasn't anything
better, at least not under a free license. So CollabNet determined to write a new version control system from
scratch, retaining the basic ideas of CVS, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999),
and asked if he'd like to work on this new project. Coincidentally, at the time Karl was already discussing a design
for a new version control system with his friend Jim Blandy. In 1995, the two had started Cyclic Software, a
company providing CVS support contracts, and although they later sold the business, they still used CVS every
day at their jobs. Their frustration with CVS had led Jim to think carefully about better ways to manage versioned
data, and he'd already come up with not only the Subversion name, but also the basic design of the Subversion
data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his employer,
Red Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl
and Ben Collins-Sussman, and detailed design work began in May 2000. With the help of some well-placed
prods from Brian Behlendorf and Jason Robbins of CollabNet, and from Greg Stein (at the time an independent
developer active in the WebDAV/DeltaV specification process), Subversion quickly attracted a community of
active developers. It turned out that many people had encountered the same frustrating experiences with CVS
and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version control
methodology, they just wanted to fix CVS. They decided that Subversion would match CVS's features and pre-
serve the same development model, but not duplicate CVS's most obvious flaws. And although it did not need
to be a drop-in replacement for CVS, it should be similar enough that any CVS user could make the switch with
little effort.

After 14 months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion developers
stopped using CVS to manage Subversion's own source code and started using Subversion instead.

3CollabNet Enterprise Edition has since been replaced by a new product line called CollabNet TeamForge.

http://www.collab.net

Preface

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-
time Subversion developers), Subversion is run like most open source projects, governed by a loose, transparent
set of rules that encourage meritocracy. In 2009, CollabNet worked with the Subversion developers towards the
goal of integrating the Subversion project into the Apache Software Foundation (ASF), one of the most well-
known collectives of open source projects in the world. Subversion's technical roots, community priorities, and
development practices were a perfect fit for the ASF, many of whose members were already active Subversion
contributors. In early 2010, Subversion was fully adopted into the ASF's family of top-level projects, moved its
project web presence to http://subversion.apache.org, and was rechristened “Apache Subversion”.

Subversion's Architecture

Figure 1, “Subversion's architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's architecture

commanding
client app

GUI cllant apps

*
-

r

Ciert
nigrtace

Glient Library
Working Gopy /
ManagBmBﬂT
Library "

Repositary Acoass

| Day | | VN | |L-:II:EI.I |

/ Ye Olde Internet
{rey TCPIP Mabwork)

l

Apache

mod_dav

maod_dav_svn |

SWnsane

Aepository
IMerface

Subvarsion Reposiory

Berkeley DB

= —-—
FSF5

disgram by Briam W. Fitzpatrick «fitz & red-bean.ocams

On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion
client program, which manages local reflections of portions of that versioned data. Between these extremes are
multiple routes through a Repository Access (RA) layer, some of which go across computer networks and through

xvil

http://subversion.apache.org

Preface

network servers which then access the repository, others of which bypass the network altogether and access the
repository directly.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what you get.
Don't be alarmed if the brief descriptions leave you scratching your head—plenty more pages in this book are
devoted to alleviating that confusion.

svn
The command-line client program

svnversion
A program for reporting the state (in terms of revisions of the items present) of a working copy

svnlook
A tool for directly inspecting a Subversion repository

svnadmin
A tool for creating, tweaking, or repairing a Subversion repository

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a
network

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to
make your repository available to others over a network

svndumpfilter
A program for filtering Subversion repository dump streams

svnsync
A program for incrementally mirroring one repository to another over a network

svnrdump
A program for performing repository history dumps and loads over a network

What's New in Subversion

The first edition of this book was published by O'Reilly Media in 2004, shortly after Subversion had reached 1.0.
Since that time, the Subversion project has continued to release new major releases of the software. Here's a
quick summary of major new changes since Subversion 1.0. Note that this is not a complete list; for full details,
please visit Subversion's web site at http://subversion.apache.org.

Subversion 1.1 (September 2004)
Release 1.1 introduced FSFS, a flat-file repository storage option for the repository. While the Berkeley DB
backend is still widely used and supported, FSFS has since become the default choice for newly created
repositories due to its low barrier to entry and minimal maintenance requirements. Also in this release came
the ability to put symbolic links under version control, auto-escaping of URLSs, and a localized user interface.

xviii

http://subversion.apache.org

Preface

Subversion 1.2 (May 2005)
Release 1.2 introduced the ability to create server-side locks on files, thus serializing commit access to cer-
tain resources. While Subversion is still a fundamentally concurrent version control system, certain types
of binary files (e.g. art assets) cannot be merged together. The locking feature fulfills the need to version
and protect such resources. With locking also came a complete WebDAV auto-versioning implementation,
allowing Subversion repositories to be mounted as network folders. Finally, Subversion 1.2 began using a
new, faster binary-differencing algorithm to compress and retrieve old versions of files.

Subversion 1.3 (December 2005)
Release 1.3 brought path-based authorization controls to the svnserve server, matching a feature formerly
found only in the Apache server. The Apache server, however, gained some new logging features of its own,
and Subversion's API bindings to other languages also made great leaps forward.

Subversion 1.4 (September 2006)
Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository replication over a net-
work. Major parts of the working copy metadata were revamped to no longer use XML (resulting in client-
side speed gains), while the Berkeley DB repository backend gained the ability to automatically recover itself
after a server crash.

Subversion 1.5 (June 2008)
Release 1.5 took much longer to finish than prior releases, but the headliner feature was gigantic: semi-au-
tomated tracking of branching and merging. This was a huge boon for users, and pushed Subversion far
beyond the abilities of CVS and into the ranks of commercial competitors such as Perforce and ClearCase.
Subversion 1.5 also introduced a bevy of other user-focused features, such as interactive resolution of file
conflicts, sparse checkouts, client-side management of changelists, powerful new syntax for externals defi-
nitions, and SASL authentication support for the svnserve server.

Subversion 1.6 (March 2009)
Release 1.6 continued to make branching and merging more robust by introducing tree conflicts, and offered
improvements to several other existing features: more interactive conflict resolution options; de-telescop-
ing and outright exclusion support for sparse checkouts; file-based externals definitions; and operational
logging support for svnserve similar to what mod_dav_svn offered. Also, the command-line client in-
troduced a new shortcut syntax for referring to Subversion repository URLSs.

Subversion 1.7 (October 2011)
Release 1.7 was primarily a delivery vehicle for two big plumbing overhauls of existing Subversion com-
ponents. The largest and most impactful of these was the so-called “WC-NG”—a complete rewrite of the
libsvn_ we working copy management library. The second change was the introduction of a sleeker HTTP
protocol for Subversion client/server interaction. Subversion 1.7 delivered a handful of additional features,
many bug fixes, and some notable performance improvements, too.

Audience

This book is written for computer-literate folk who want to use Subversion to manage their data. While Subver-
sion runs on a number of different operating systems, its primary user interface is command-line-based. That
command-line tool (svn), and some additional auxiliary programs, are the focus of this book.

For consistency, the examples in this book assume that the reader is using a Unix-like operating system and is
relatively comfortable with Unix and command-line interfaces. That said, the svn program also runs on non-
Unix platforms such as Microsoft Windows. With a few minor exceptions, such as the use of backward slashes (\)

Xix

Preface

instead of forward slashes (/) for path separators, the input to and output from this tool when run on Windows
are identical to that of its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes to source code.
This is the most common use for Subversion, and therefore it is the scenario underlying all of the book's exam-
ples. But Subversion can be used to manage changes to any sort of information—images, music, databases, doc-
umentation, and so on. To Subversion, all data is just data.

While this book is written with the assumption that the reader has never used a version control system, we've
also tried to make it easy for users of CVS (and other systems) to make a painless leap into Subversion. Special
sidebars may mention other version control systems from time to time, and Appendix B, Subversion for CVS
Users summarizes many of the differences between CVS and Subversion.

Note also that the source code examples used throughout the book are only examples. While they will compile
with the proper compiler incantations, they are intended to illustrate a particular scenario and not necessarily
to serve as examples of good programming style or practices.

How to Read This Book

Technical books always face a certain dilemma: whether to cater to top-down or to bottom-up learners. A top-
down learner prefers to read or skim documentation, getting a large overview of how the system works; only
then does she actually start using the software. A bottom-up learner is a “learn by doing” person—someone who
just wants to dive into the software and figure it out as she goes, referring to book sections when necessary. Most
books tend to be written for one type of person or the other, and this book is undoubtedly biased toward top-
down learners. (And if you're actually reading this section, you're probably already a top-down learner yourself!)
However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of
Subversion topics, the content of each section tends to be heavy with specific examples that you can try-by-
doing. For the impatient folks who just want to get going, you can jump right to Appendix A, Subversion Quick-
Start Guide.

Regardless of your learning style, this book aims to be useful to people of widely different backgrounds—from
those with no previous experience in version control to experienced system administrators. Depending on your
own background, certain chapters may be more or less important to you. The following can be considered a
“recommended reading list” for various types of readers:

Experienced system administrators
The assumption here is that you've probably used version control before and are dying to get a Subversion
server up and running ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration
will show you how to create your first repository and make it available over the network. After that's done,
Chapter 2, Basic Usage and Appendix B, Subversion for CVS Users are the fastest routes to learning the
Subversion client.

New users
Your administrator has probably set up Subversion already, and you need to learn how to use the client. If
you've never used a version control system, then Chapter 1, Fundamental Concepts is a vital introduction to
the ideas behind version control. Chapter 2, Basic Usage is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're going to want to
learn how to do more advanced things with Subversion, such as how to use Subversion's property support
(Chapter 3, Advanced Topics), how to use branches and perform merges (Chapter 4, Branching and Merg-

Preface

ing), how to configure runtime options (Chapter 7, Customizing Your Subversion Experience), and other
things. These chapters aren't critical at first, but be sure to read them once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software
on top of its many APIs. Chapter 8, Embedding Subversion is just for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide for all
Subversion commands, and the appendixes cover a number of useful topics. These are the chapters you're mostly
likely to come back to after you've finished the book.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository,
working copies, and revisions.

Chapter 2, Basic Usage
Walks you through a day in the life of a Subversion user. It demonstrates how to use a Subversion client to
obtain, modify, and commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with, such as versioned
metadata, file locking, and peg revisions.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use
cases, how to undo changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and
the tools you can use to do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and offers different ways to access your repository: HTTP,
the svn protocol, and local disk access. It also covers the details of authentication, authorization and anony-
mous access.

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text, and how to make
external tools cooperate with Subversion.

Chapter 8, Embedding Subversion
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas
from a programmer's point of view. It also demonstrates how to use the public APIs to write a program that
uses Subversion.

Chapter 9, Subversion Complete Reference
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for
the whole family!

Xx1

Preface

Appendix A, Subversion Quick-Start Guide
For the impatient, a whirlwind explanation of how to install Subversion and start using it immediately. You
have been warned.

Appendix B, Subversion for CVS Users
Covers the similarities and differences between Subversion and CVS, with numerous suggestions on how to
break all the bad habits you picked up from years of using CVS. Included are descriptions of Subversion re-
vision numbers, versioned directories, offline operations, update versus status, branches, tags, metadata,
conflict resolution, and authentication.

Appendix C, WebDAV and Autoversioning
Describes the details of WebDAV and DeltaV and how you can configure your Subversion repository to be
mounted read/write as a DAV share.

Appendix D, Copyright
A copy of the Creative Commons Attribution License, under which this book is licensed.

This Book Is Free

This book started out as bits of documentation written by Subversion project developers, which were then coa-
lesced into a single work and rewritten. As such, it has always been under a free license (see Appendix D, Copy-
right). In fact, the book was written in the public eye, originally as part of the Subversion project itself. This
means two things:

» You will always find the latest version of this book in the book's own Subversion repository.

« You can make changes to this book and redistribute it however you wish—it's under a free license. Your only
obligation is to maintain proper attribution to the original authors. Of course, we'd much rather you send
feedback and patches to the Subversion developer community, instead of distributing your private version of
this book.

The online home of this book's development and most of the volunteer-driven translation efforts regarding it
is http://svnbook.red-bean.com. There you can find links to the latest releases and tagged versions of the book
in various formats, as well as instructions for accessing the book's Subversion repository (where its DocBook
XML source code lives). Feedback is welcomed—encouraged, even. Please submit all comments, complaints, and
patches against the book sources to <svnbook-dev@red-bean.com>.

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors would like to
thank Brian Behlendorf and CollabNet for the vision to fund such a risky and ambitious new open source project;
Jim Blandy for the original Subversion name and design—we love you, Jim; and Karl Fogel for being such a good
friend and a great community leader, in that order.*

Thanks to O'Reilly and the team of professional editors who have helped us polish this text at various stages of
its evolution: Chuck Toporek, Linda Mui, Tatiana Apandi, Mary Brady, and Mary Treseler. Your patience and
support has been tremendous.

40h, and thanks, Karl, for being too overworked to write this book yourself.

xxil

http://svnbook.red-bean.com

Preface

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions, and
patches. An exhaustive listing of those folks' names would be impractical to print and maintain here, but may
their names live on forever in this book's version control history!

xxiii

Chapter 1. Fundamental Concepts

This chapter is a short, casual introduction to Subversion and its approach to version control. We begin with
a discussion of general version control concepts, work our way into the specific ideas behind Subversion, and
show some simple examples of Subversion in use.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind
that Subversion can manage any sort of file collection—it's not limited to helping computer programmers.

Version Control Basics

A version control system (or revision control system) is a system that tracks incremental versions (or revisions)
of files and, in some cases, directories over time. Of course, merely tracking the various versions of a user's (or
group of users') files and directories isn't very interesting in itself. What makes a version control system useful
is the fact that it allows you to explore the changes which resulted in each of those versions and facilitates the
arbitrary recall of the same.

In this section, we'll introduce some fairly high-level version control system components and concepts. We'll
limit our discussion to modern version control systems—in today's interconnected world, there is very little point
in acknowledging version control systems which cannot operate across wide-area networks.

The Repository

At the core of the version control system is a repository, which is the central store of that system's data. The
repository usually stores information in the form of a filesystem tree—a hierarchy of files and directories. Any
number of clients connect to the repository, and then read or write to these files. By writing data, a client makes
the information available to others; by reading data, the client receives information from others. Figure 1.1, “A
typical client/server system” illustrates this.

Figure 1.1. A typical client/server system

Repository

[1

Wirite Hﬁ::h::'
Client Client

Why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository
is a kind of file server, but it's not your usual breed. What makes the repository special is that as the files in the
repository are changed, the repository remembers each version of those files.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree.
But what makes a version control client interesting is that it also has the ability to request previous states of

Fundamental Concepts

the filesystem from the repository. A version control client can ask historical questions such as “What did this
directory contain last Wednesday?” and “Who was the last person to change this file, and what changes did he
make?” These are the sorts of questions that are at the heart of any version control system.

The Working Copy

A version control system's value comes from the fact that it tracks versions of files and directories, but the rest of
the software universe doesn't operate on “versions of files and directories”. Most software programs understand
how to operate only on a single version of a specific type of file. So how does a version control user interact with
an abstract—and, often, remote—repository full of multiple versions of various files in a concrete fashion? How
does his or her word processing software, presentation software, source code editor, web design software, or
some other program—all of which trade in the currency of simple data files—get access to such files? The answer
is found in the version control construct known as a working copy.

A working copy is, quite literally, a local copy of a particular version of a user's VCS-managed data upon which
that user is free to work. Working copies' appear to other software just as any other local directory full of files, so
those programs don't have to be “version-control-aware” in order to read from and write to that data. The task
of managing the working copy and communicating changes made to its contents to and from the repository falls
squarely to the version control system's client software.

Versioning Models

If the primary mission of a version control system is to track the various versions of digital information over
time, a very close secondary mission in any modern version control system is to enable collaborative editing and
sharing of that data. But different systems use different strategies to achieve this. It's important to understand
these different strategies, for a couple of reasons. First, it will help you compare and contrast existing version
control systems, in case you encounter other systems similar to Subversion. Beyond that, it will also help you
make more effective use of Subversion, since Subversion itself supports a couple of different ways of working.

The problem of file sharing

All version control systems have to solve the same fundamental problem: how will the system allow users to
share information, but prevent them from accidentally stepping on each other's feet? It's all too easy for users
to accidentally overwrite each other's changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two coworkers, Harry
and Sally. They each decide to edit the same repository file at the same time. If Harry saves his changes to the
repository first, it's possible that (a few moments later) Sally could accidentally overwrite them with her own
new version of the file. While Harry's version of the file won't be lost forever (because the system remembers
every change), any changes Harry made won't be present in Sally's newer version of the file, because she never
saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from the latest version
of the file—and probably by accident. This is definitely a situation we want to avoid!

"The term “working copy” can be generally applied to any one file version's local instance. When most folks use the term, though, they are referring
to a whole directory tree containing files and subdirectories managed by the version control system.

Fundamental Concepts

Figure 1.2. The problem to avoid

Iwa wsers read the same file They both begin ta edit their copies

Repository Repository

A A
fiend Read —
]]
Harry Sally Harry Sally
Haery pubiishes his version first Sally accidentolly overwrifes Horry's version
Repository Repasitary

£]

Harry Sally Harry

The lock-modify-unlock solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors clob-
bering each other's work. In this model, the repository allows only one person to change a file at a time. This
exclusivity policy is managed using locks. Harry must “lock” a file before he can begin making changes to it. If
Harry has locked a file, Sally cannot also lock it, and therefore cannot make any changes to that file. All she can
do is read the file and wait for Harry to finish his changes and release his lock. After Harry unlocks the file, Sally
can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock solution” demonstrates
this simple solution.

Fundamental Concepts

Figure 1.3. The lock-modify-unlock solution

Harey “lacks” file A, then copies While Harry edits, Sally’s fock
it for editing attempt fails
Repository Hepository

A A

Lok |
I wend lock
)

Harry Sally Harry Sally
Harry writes his version, then Now Sally can fock, read, and
releases his lock edit the lntest version
Repository Hepository

=

11 pead
ey l
-

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive and often becomes a roadblock for
users:

 Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Mean-
while, because Sally is still waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now
Sally has to get an administrator to release Harry's lock. The situation ends up causing a lot of unnecessary
delay and wasted time.

+ Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text file, and Sally
simply wants to edit the end of the same file? These changes don't overlap at all. They could easily edit the
file simultaneously, and no great harm would come, assuming the changes were properly merged together.
There's no need for them to take turns in this situation.

« Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously
locks and edits file B. But what if A and B depend on one another, and the changes made to each are seman-
tically incompatible? Suddenly A and B don't work together anymore. The locking system was powerless to
prevent the problem—yet it somehow provided a false sense of security. It's easy for Harry and Sally to imagine
that by locking files, each is beginning a safe, insulated task, and thus they need not bother discussing their
incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution

Fundamental Concepts

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an alternative to
locking. In this model, each user's client contacts the project repository and creates a personal working copy.
Users then work simultaneously and independently, modifying their private copies. Finally, the private copies
are merged together into a new, final version. The version control system often assists with the merging, but
ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the
repository. They work concurrently and make changes to the same file A within their copies. Sally saves her
changes to the repository first. When Harry attempts to save his changes later, the repository informs him that
his file A is out of date. In other words, file A in the repository has somehow changed since he last copied it.
So Harry asks his client to merge any new changes from the repository into his working copy of file A. Chances
are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he saves his
working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-
modify-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Two users copy the same file They both begin ta edit their copies
Repository Repository
A A

2] DG

Harry Sally Harry Sally
Sally publishes her version first Harey gefs an “ouwl-of-dafe”error
Repasitory Repository

Fundamental Concepts

Figure 1.5. The copy-modify-merge solution (continued)

Harry compares the \atest version A mew merged version is created
fo his oum
Repository Repository
s
A"
fead
™=, [[,
%
Harry Sally Harry Sally
The merged version is published Now both users have each
others” changes
Repository
A
Read
Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and
it's usually not much of a problem. When Harry asks his client to merge the latest repository changes into his
working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll be able to see both sets of
conflicting changes and manually choose between them. Note that software can't automatically resolve conflicts;
only humans are capable of understanding and making the necessary intelligent choices. Once Harry has man-
ually resolved the overlapping changes—perhaps after a discussion with Sally—he can safely save the merged
file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can
work in parallel, never waiting for one another. When they work on the same files, it turns out that most of
their concurrent changes don't overlap at all; conflicts are infrequent. And the amount of time it takes to resolve
conflicts is usually far less than the time lost by a locking system.

In the end, it all comes down to one critical factor: user communication. When users communicate poorly, both
syntactic and semantic conflicts increase. No system can force users to communicate perfectly, and no system
can detect semantic conflicts. So there's no point in being lulled into a false sense of security that a locking system
will somehow prevent conflicts; in practice, locking seems to inhibit productivity more than anything else.

When Locking Is Necessary

While the lock-modify-unlock model is considered generally harmful to collaboration, sometimes locking
is appropriate.

Fundamental Concepts

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is,
that the majority of the files in the repository are line-based text files (such as program source code). But for
files with binary formats, such as artwork or sound, it's often impossible to merge conflicting changes. In
these situations, it really is necessary for users to take strict turns when changing the file. Without serialized
access, somebody ends up wasting time on changes that are ultimately discarded.

While Subversion is primarily a copy-modify-merge system, it still recognizes the need to lock an occasional
file, and thus provides mechanisms for this. We discuss this feature in the section called “Locking”.

Version Control the Subversion Way

We've mentioned already that Subversion is a modern, network-aware version control system. As we described
in the section called “Version Control Basics” (our high-level version control overview), a repository serves as
the core storage mechanism for Subversion's versioned data, and it's via working copies that users and their
software programs interact with that data. In this section, we'll begin to introduce the specific ways in which
Subversion implements version control.

Subversion Repositories

Subversion implements the concept of a version control repository much as any other modern version control
system would. Unlike a working copy, a Subversion repository is an abstract entity, able to be operated upon
almost exclusively by Subversion's own libraries and tools. As most of a user's Subversion interactions involve
the use of the Subversion client and occur in the context of a working copy, we spend the majority of this book
discussing the Subversion working copy and how to manipulate it. For the finer details of the repository, though,
check out Chapter 5, Repository Administration.

Revisions

A Subversion client commits (that is, communicates the changes made to) any number of files and directories as
a single atomic transaction. By atomic transaction, we mean simply this: either all of the changes are accepted
into the repository, or none of them is. Subversion tries to retain this atomicity in the face of program crashes,
system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each
revision is assigned a unique natural number, one greater than the number assigned to the previous revision. The
initial revision of a freshly created repository is numbered 0 and consists of nothing but an empty root directory.

Figure 1.6, “Tree changes over time” illustrates a nice way to visualize the repository. Imagine an array of revision
numbers, starting at 0, stretching from left to right. Each revision number has a filesystem tree hanging below
it, and each tree is a “snapshot” of the way the repository looked after a commit.

Fundamental Concepts

Figure 1.6. Tree changes over time

0 1 2

())

i
;

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to the entire repository tree, not
individual files. Each revision number selects an entire tree, a particular state of the repository after some
committed change. Another way to think about it is that revision N represents the state of the repository
filesystem after the Nth commit. When Subversion users talk about “revision 5 of foo. c,” they really mean
“foo.c as it appears in revision 5.” Notice that in general, revisions N and M of a file do not necessarily
differ! Many other version control systems use per-file revision numbers, so this concept may seem unusual
at first. (Former CVS users might want to see Appendix B, Subversion for CVS Users for more details.)

Addressing the Repository

Subversion client programs use URLS to identify versioned files and directories in Subversion repositories. For
the most part, these URLSs use the standard syntax, allowing for server names and port numbers to be specified

as part of the URL.

« http://svn.example.com/svn/project
« http://svn.example.com:9834/repos

Subversion repository URLs aren't limited to only the http: // variety. Because Subversion offers several dif-
ferent ways for its clients to communicate with its servers, the URLs used to address the repository differ subtly
depending on which repository access mechanism is employed. Table 1.1, “Repository access URLs” describes
how different URL schemes map to the available repository access methods. For more details about Subversion's

server options, see Chapter 6, Server Configuration.

Table 1.1. Repository access URLSs

Schema

Access method

file:///

Direct repository access (on local disk)

Fundamental Concepts

Schema Access method

http:// Access via WebDAV protocol to Subversion-aware
Apache server

https:// Same as http://, but with SSL encryption
svn:// Access via custom protocol to an svnserve server
svn+ssh:// Same as svn://, but through an SSH tunnel

Subversion's handling of URLSs has some notable nuances. For example, URLs containing the file:// access
method (used for local repositories) must, in accordance with convention, have either a server name of 1ocal-
host or no server name at all:

« file:///var/svn/repos
« file://localhost/var/svn/repos

Also, users of the file:// scheme on Windows platforms will need to use an unofficially “standard” syntax for
accessing repositories that are on the same machine, but on a different drive than the client's current working
drive. Either of the two following URL path syntaxes will work, where X is the drive on which the repository
resides:

« file:///X:/var/svn/repos
« file:///X|/var/svn/repos

Note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses back-
slashes. Also note that when using the file:///x|/ form at the command line, you need to quote the URL
(wrap it in quotation marks) so that the vertical bar character is not interpreted as a pipe.

You cannot use Subversion's file:// URLs in a regular web browser the way typical
<> file:// URLs can. When you attempt to view a file:// URL in a regular web browser, it
reads and displays the contents of the file at that location by examining the filesystem directly.
However, Subversion's resources exist in a virtual filesystem (see the section called “Reposi-

tory Layer”), and your browser will not understand how to interact with that filesystem.

The Subversion client will automatically encode URLs as necessary, just like a web browser does. For exam-
ple, the URL http://host/path with space/project/espafia — which contains both spaces and up-
per-ASCII characters — will be automatically interpreted by Subversion as if you'd provided http://host/
path%20with%20space/project/espa%sC3%Bla. If the URL contains spaces, be sure to place it within quo-
tation marks at the command line so that your shell treats the whole thing as a single argument to the program.

There is one notable exception to Subversion's handling of URLs which also applies to its handling of local paths
in many contexts, too. If the final path component of your URL or local path contains an at sign (@), you need to
use a special syntax—described in the section called “Peg and Operative Revisions”—in order to make Subversion
properly address that resource.

In Subversion 1.6, a new caret () notation was introduced as a shorthand for “the URL of the repository's root
directory”. For example, you can use the */tags/bigsandwich/ to refer to the URL of the /tags/bigsand-
wich directory in the root of the repository. Note that this URL syntax works only when your current working
directory is a working copy—the command-line client knows the repository's root URL by looking at the working
copy's metadata. Also note that when you wish to refer precisely to the root directory of the repository, you must
do so using */ (with the trailing slash character), not merely *.

Fundamental Concepts

Subversion Working Copies

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files.
You can edit these files however you wish, and if they're source code files, you can compile your program from
them in the usual way. Your working copy is your own private work area: Subversion will never incorporate other
people's changes, nor make your own changes available to others, until you explicitly tell it to do so. You can
even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly, Sub-
version provides you with commands to “publish” your changes to the other people working with you on your
project (by writing to the repository). If other people publish their own changes, Subversion provides you with
commands to merge those changes into your working copy (by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these
commands. In particular, each working copy contains a subdirectory named . svn, also known as the working
copy's administrative directory. The files in the administrative directory help Subversion recognize which of
your versioned files contain unpublished changes, and which files are out of date with respect to others' work.

Prior to version 1.7, Subversion maintained . svn administrative subdirectories in every ver-
sioned directory of your working copy. Subversion 1.7 offers a completely new approach to

&

how working copy metadata is stored and maintained, and chief among the visible changes
to this approach is that each working copy now has only one . svn subdirectory which is an
immediate child of the root of that working copy.

While . svn is the de facto name of the Subversion administrative directory, Windows users
@) may run into problems with the ASP.NET Web application framework disallowing access to
directories whose names begin with a dot (.). As a special consideration to users in such situa-
tions, Subversion will instead use _svn as the administrative directory name if it finds a vari-
able named SVN ASP DOT NET HACK in its operating environment. Throughout this book,

any reference you find to . svn applies also to _svn when this “ASP.NET hack” is in use.

How the working copy works

For each file in a working directory, Subversion records (among other things) two essential pieces of information:
« What revision your working file is based on (this is called the file's working revision)
« A timestamp recording when the local copy was last updated by the repository

Given this information, by talking to the repository, Subversion can tell which of the following four states a
working file is in:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the
repository since its working revision. An svn commit of the file will do nothing, and an svn update of
the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the
repository since you last updated. There are local changes that have not been committed to the repository;

10

Fundamental Concepts

thus an svn commit of the file will succeed in publishing your changes, and an svn update of the file will
do nothing.

Unchanged, and out of date
The file has not been changed in the working directory, but it has been changed in the repository. The file
should eventually be updated in order to make it current with the latest public revision. An svn commit of
the file will do nothing, and an svn update of the file will fold the latest changes into your working copy.

Locally changed, and out of date
The file has been changed both in the working directory and in the repository. An svn commit of the file
will fail with an “out-of-date” error. The file should be updated first; an svn update command will attempt
to merge the public changes with the local changes. If Subversion can't complete the merge in a plausible
way automatically, it leaves it to the user to resolve the conflict.

Fundamental working copy interactions
A typical Subversion repository often holds the files (or source code) for several projects; usually, each project

is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy will usually cor-
respond to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects, paint and calc. Each project
lives in its own top-level subdirectory, as shown in Figure 1.7, “The repository's filesystem”.

Figure 1.7. The repository's filesystem

M
=

> Makefile

k J

y

integer.c

L

L L

button.c

—-| paint |

Makefile

Ly

* fanvas.C

y

- brush.c

11

Fundamental Concepts

To get a working copy, you must check out some subtree of the repository. (The term check out may sound like
it has something to do with locking or reserving resources, but it doesn't; it simply creates a working copy of the
project for you.) For example, if you check out /calc, you will get a working copy like this:

$ svn checkout http://svn.example.com/repos/calc

A calc/Makefile
A calc/integer.c
A calc/button.c

Checked out revision 56.
S 1s -A calc
Makefile button.c integer.c .svn/

$

The list of letter As in the left margin indicates that Subversion is adding a number of items to your working
copy. You now have a personal copy of the repository's /calc directory, with one additional entry—. svn—
which holds the extra information needed by Subversion, as mentioned earlier.

Suppose you make changes to button. c. Since the . svn directory remembers the file's original modification
date and contents, Subversion can tell that you've changed the file. However, Subversion does not make your
changes public until you explicitly tell it to. The act of publishing your changes is more commonly known as
committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's svn commit command:

$ svn commit button.c -m "Fixed a typo in button.c."
Sending button.c

Transmitting file data .

Committed revision 57.

$

Now your changes to button.c have been committed to the repository, with a note describing your change
(namely, that you fixed a typo). If another user checks out a working copy of /calc, she will see your changes
in the latest version of the file.

Suppose you have a collaborator, Sally, who checked out a working copy of / calc at the same time you did. When
you commit your change to button.c, Sally's working copy is left unchanged; Subversion modifies working
copies only at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the svn update
command. This will incorporate your changes into her working copy, as well as any others that have been com-
mitted since she checked it out.

S pwd

/home/sally/calc

$ 1s -A

Makefile button.c integer.c .svn/
$ svn update

Updating '.':

U button.c

Updated to revision 57.

$

12

Fundamental Concepts

The output from the svn update command indicates that Subversion updated the contents of button. c. Note
that Sally didn't need to specify which files to update; Subversion uses the information in the . svn directory as
well as further information in the repository, to decide which files need to be brought up to date.

Mixed-revision working copies

As a general principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability
to have a working copy containing files and directories with a mix of different working revision numbers. Sub-
version working copies do not always correspond to any single revision in the repository; they may contain files
from several different revisions. For example, suppose you check out a working copy from a repository whose
most recent revision is 4:

calc/
Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose
you make a change to button. c, and commit that change. Assuming no other commits have taken place, your
commit will create revision 5 of the repository, and your working copy will now look like this:

cale/
Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits a change to integer. c, creating revision 6. If you use svn update
to bring your working copy up to date, it will look like this:

cale/
Makefile:6
integer.c:6
button.c:6

Sally's change to integer.c will appear in your working copy, and your change will still be present in
button.c. In this example, the text of Makefile is identical in revisions 4, 5, and 6, but Subversion will mark
your working copy of Make f i 1e with revision 6 to indicate that it is still current. So, after you do a clean update
at the top of your working copy, it will generally correspond to exactly one revision in the repository.

Updates and commits are separate

One of the fundamental rules of Subversion is that a “push” action does not cause a “pull” nor vice versa. Just
because you're ready to submit new changes to the repository doesn't mean you're ready to receive changes from
other people. And if you have new changes still in progress, svn update should gracefully merge repository
changes into your own, rather than forcing you to publish them.

The main side effect of this rule is that it means a working copy has to do extra bookkeeping to track mixed
revisions as well as be tolerant of the mixture. It's made more complicated by the fact that directories themselves
are versioned.

13

Fundamental Concepts

For example, suppose you have a working copy entirely at revision 10. You edit the file foo.html and then
perform an svn commit, which creates revision 15 in the repository. After the commit succeeds, many new
users would expect the working copy to be entirely at revision 15, but that's not the case! Any number of changes
might have happened in the repository between revisions 10 and 15. The client knows nothing of those changes
in the repository, since you haven't yet run svn update, and svn commit doesn't pull down new changes.
If, on the other hand, svn commit were to automatically download the newest changes, it would be possible
to set the entire working copy to revision 15—but then we'd be breaking the fundamental rule of “push” and
“pull” remaining separate actions. Therefore, the only safe thing the Subversion client can do is mark the one
file—foo.html—as being at revision 15. The rest of the working copy remains at revision 10. Only by running
svn update can the latest changes be downloaded and the whole working copy be marked as revision 15.

Mixed revisions are normal

The fact is, every time you run svn commit your working copy ends up with some mixture of revisions. The
things you just committed are marked as having larger working revisions than everything else. After several
commits (with no updates in between), your working copy will contain a whole mixture of revisions. Even if
you're the only person using the repository, you will still see this phenomenon. To examine your mixture of
working revisions, use the svn status command with the --verbose (-v) option (see the section called “See
an overview of your changes” for more information).

Often, new users are completely unaware that their working copy contains mixed revisions. This can be confus-
ing, because many client commands are sensitive to the working revision of the item they're examining. For ex-
ample, the svn log command is used to display the history of changes to a file or directory (see the section called
“Generating a List of Historical Changes”). When the user invokes this command on a working copy object, he
expects to see the entire history of the object. But if the object's working revision is quite old (often because svn
update hasn't been run in a long time), the history of the older version of the object is shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or update to
a revision older than the one you already have) portions of your working copy to an earlier revision; you'll learn
how to do that in Chapter 2, Basic Usage. Perhaps you'd like to test an earlier version of a submodule contained
in a subdirectory, or perhaps you'd like to figure out when a bug first came into existence in a specific file. This is
the “time machine” aspect of a version control system—the feature that allows you to move any portion of your
working copy forward and backward in history.

Mixed revisions have limitations

However you make use of mixed revisions in your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of a file or directory that isn't fully up to date. If a newer version of the
item exists in the repository, your attempt to delete will be rejected to prevent you from accidentally destroying
changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up to date. You'll learn about at-
taching “properties” to items in Chapter 3, Advanced Topics. A directory's working revision defines a specific
set of entries and properties, and thus committing a property change to an out-of-date directory may destroy
properties you've not yet seen.

Finally, beginning in Subversion 1.7, you cannot by default use a mixed-revision working copy as the target of a
merge operation. (This new requirement was introduced to prevent common problems which stem from doing
S0.)

14

Fundamental Concepts

Summary

We covered a number of fundamental Subversion concepts in this chapter:

+ We introduced the notions of the central repository, the client working copy, and the array of repository re-

vision trees.

« We saw some simple examples of how two collaborators can use Subversion to publish and receive changes
from one another, using the “copy-modify-merge” model.

« We talked a bit about the way Subversion tracks and manages information in a working copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this
knowledge, you should now be ready to move into the next chapter, which is a detailed tour of Subversion's

commands and features.

15

Chapter 2. Basic Usage

Theory is useful, but its application is just plain fun. Let's move now into the details of using Subversion. By the
time you reach the end of this chapter, you will be able to perform all the tasks you need to use Subversion in
a normal day's work. You'll start with getting your files into Subversion, followed by an initial checkout of your
code. We'll then walk you through making changes and examining those changes. You'll also see how to bring
changes made by others into your working copy, examine them, and work through any conflicts that might arise.

This chapter will not provide exhaustive coverage of all of Subversion's commands—rather, it's a conversational
introduction to the most common Subversion tasks that you'll encounter. This chapter assumes that you've read
and understood Chapter 1, Fundamental Concepts and are familiar with the general model of Subversion. For a
complete reference of all commands, see Chapter 9, Subversion Complete Reference.

Also, this chapter assumes that the reader is seeking information about how to interact in a basic fashion with
an existing Subversion repository. No repository means no working copy; no working copy means not much
of interest in this chapter. There are many Internet sites which offer free or inexpensive Subversion repository
hosting services. Or, if you'd prefer to set up and administer your own repositories, check out Chapter 5, Repos-
itory Administration. But don't expect the examples in this chapter to work without the user having access to
a Subversion repository.

Finally, any Subversion operation that contacts the repository over a network may potentially require that the
user authenticate. For the sake of simplicity, our examples throughout this chapter avoid demonstrating and
discussing authentication. Be aware that if you hope to apply the knowledge herein to an existing, real-world
Subversion instance, you'll probably be forced to provide at least a username and password to the server. See
the section called “Client Credentials” for a detailed description of Subversion's handling of authentication and
client credentials.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users
new and old. Conveniently, though, the Subversion command-line is self-documenting, alleviating the need to
grab a book off the shelf (wooden, virtual, or otherwise). The svn help command is your gateway to that built-
in documentation:

$ svn help

Subversion command-line client, wversion 1.7.0.

Type 'svn help <subcommand>' for help on a specific subcommand.
Type 'svn --version' to see the program version and RA modules

or 'svn --version --quiet' to see just the version number.

Most subcommands take file and/or directory arguments, recursing
on the directories. If no arguments are supplied to such a

command, it recurses on the current directory (inclusive) by default.

Available subcommands:
add
blame (praise, annotate, ann)

cat

16

Basic Usage

As described in the previous output, you can ask for help on a particular subcommand by running svn help
SUBCOMMAND. Subversion will respond with the full usage message for that subcommand, including its syntax,
options, and behavior:

$ svn help help

help (?, h): Describe the usage of this program or its subcommands.
usage: help [SUBCOMMAND...]

Global options:
—--username ARG : specify a username ARG

—-—-password ARG : specify a password ARG

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Some folks refer to such things
as “switches” or “flags”—in this book, we'll call them “options”. You'll find the options supported by a given
svn subcommand, plus a set of options which are globally supported by all subcommands, listed near the
bottom of the built-in usage message for that subcommand.

Subversion's options have two distinct forms: short options are a single hyphen followed by a single letter,
and long options consist of two hyphens followed by several letters and hyphens (e.g., -s and --this-is-
a-long-option, respectively). Every option has at least one long format. Some, such as the --change-
11 st option, feature an abbreviated long-format alias (--c1, in this case). Only certain options—generally
the most-used ones—have an additional short format. To maintain clarity in this book, we usually use the
long form in code examples, but when describing options, if there's a short form, we'll provide the long
form (to improve clarity) and the short form (to make it easier to remember). Use the form you're more
comfortable with when executing your own Subversion commands.

Many Unix-based distributions of Subversion include manual pages of the sort that can be invoked using the
man program, but those tend to carry only pointers to other sources of real help, such as the project's website and
to the website which hosts this book. Also, several companies offer Subversion help and support, too, usually via
a mixture of web-based discussion forums and fee-based consulting. And of course, the Internet holds a decade's

worth of Subversion-related discussions just begging to be located by your favorite search engine. Subversion
help is never too far away.

Getting Data into Your Repository

You can get new files into your Subversion repository in two ways: svn import and svn add. We'll discuss svn
import now and will discuss svn add later in this chapter when we review a typical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of files into a repository, creating inter-
mediate directories as necessary. svn import doesn't require a working copy, and your files are immediately
committed to the repository. You typically use this when you have an existing tree of files that you want to begin
tracking in your Subversion repository. For example:

$ svn import /path/to/mytree \

17

Basic Usage

http://svn.example.com/svn/repo/some/project \

-m "Initial import"

Adding mytree/foo.c

Adding mytree/bar.c

Adding mytree/subdir

Adding mytree/subdir/quux.h

Committed revision 1.

$

The previous example copied the contents of the local directory mytree into the directory some/project in
the repository. Note that you didn't have to create that new directory first—svn import does that for you. Im-
mediately after the commit, you can see your data in the repository:

$ svn list http://svn.example.com/svn/repo/some/project
bar.c

foo.c

subdir/

$

Note that after the import is finished, the original local directory is not converted into a working copy. To begin
working on that data in a versioned fashion, you still need to create a fresh working copy of that tree.

Recommended Repository Layout

Subversion provides the ultimate flexibility in terms of how you arrange your data. Because it simply versions
directories and files, and because it ascribes no particular meaning to any of those objects, you may arrange the
data in your repository in any way that you choose. Unfortunately, this flexibility also means that it's easy to find
yourself “lost without a roadmap” as you attempt to navigate different Subversion repositories which may carry
completely different and unpredictable arrangements of the data within them.

To counteract this confusion, we recommend that you follow a repository layout convention (established long
ago, in the nascency of the Subversion project itself) in which a handful of strategically named Subversion repos-
itory directories convey valuable meaning about the data they hold. Most projects have a recognizable “main
line”, or trunk, of development; some branches, which are divergent copies of development lines; and some tags,
which are named, stable snapshots of a particular line of development. So we first recommend that each project
have a recognizable project root in the repository, a directory under which all of the versioned information for
that project—and only that project—lives. Secondly, we suggest that each project root contain a trunk subdi-
rectory for the main development line, a branches subdirectory in which specific branches (or collections of
branches) will be created, and a tags subdirectory in which specific tags (or collections of tags) will be created.
Of course, if a repository houses only a single project, the root of the repository can serve as the project root, too.

Here are some examples:

$ svn list file:///var/svn/single-project-repo
trunk/

branches/

tags/

$ svn list file:///var/svn/multi-project-repo
project-A/

project-B/

18

Basic Usage

S svn list file:///var/svn/multi-project-repo/project-A
trunk/

branches/

tags/

$

We talk much more about tags and branches in Chapter 4, Branching and Merging. For details and some advice
on how to set up repositories when you have multiple projects, see the section called “Repository Layout”. Finally,
we discuss project roots more in the section called “Planning Your Repository Organization”.

What's In a Name?

Subversion tries hard not to limit the type of data you can place under version control. The contents of files and
property values are stored and transmitted as binary data, and the section called “File Content Type” tells you
how to give Subversion a hint that “textual” operations don't make sense for a particular file. There are a few
places, however, where Subversion places restrictions on information it stores.

Subversion internally handles certain bits of data—for example, property names, pathnames, and log messages—
as UTF-8-encoded Unicode. This is not to say that all your interactions with Subversion must involve UTF-8,
though. As a general rule, Subversion clients will gracefully and transparently handle conversions between
UTF-8 and the encoding system in use on your computer, if such a conversion can meaningfully be done (which
is the case for most common encodings in use today).

In WebDAV exchanges and older versions of some of Subversion's administrative files, paths are used as XML
attribute values, and property names in XML tag names. This means that pathnames can contain only legal XML
(1.0) characters, and properties are further limited to ASCII characters. Subversion also prohibits TAB, CR, and
LF characters in path names to prevent paths from being broken up in diffs or in the output of commands such
as svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your
locale settings are compatible with UTF-8 and you don't use control characters in path names, you should have
no trouble communicating with Subversion. The command-line client adds an extra bit of help—to create “legally
correct” versions for internal use it will automatically escape illegal path characters as needed in URLSs that you

type.

Creating a Working Copy

Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking
out a directory from a repository creates a working copy of that directory on your local machine. Unless otherwise
specified, this copy contains the youngest (that is, most recently created or modified) versions of the directory
and its children found in the Subversion repository:

$ svn checkout http://svn.example.com/svn/repo/trunk
A trunk/README

A trunk/INSTALL

A trunk/src/main.c

A

trunk/src/header.h

Checked out revision 8810.

$

19

Basic Usage

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdi-
rectory of a repository by specifying that subdirectory's URL as the checkout URL:

$ svn checkout http://svn.example.com/svn/repo/trunk/src

A src/main.c
A src/header.h
A src/lib/helpers.c

Checked out revision 8810.

$

Since Subversion uses a copy-modify-merge model instead of lock-modify-unlock (see the section called “Ver-
sioning Models”), you can immediately make changes to the files and directories in your working copy. Your
working copy is just like any other collection of files and directories on your system. You can edit the files inside
it, rename it, even delete the entire working copy and forget about it.

While your working copy is “just like any other collection of files and directories on your sys-
° tem,” you can edit files at will, but you must tell Subversion about everything else that you do.
For example, if you want to copy or move an item in a working copy, you should use svn copy
or svn move instead of the copy and move commands provided by your operating system.

We'll talk more about them later in this chapter.

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need
to further notify the Subversion server that you've done anything.

What Is This .svn Directory?

The topmost directory of a working copy—and prior to version 1.7, every versioned subdirectory thereof—
contains a special administrative subdirectory named . svn. Usually, your operating system's directory
listing commands won't show this subdirectory, but it is nevertheless an important directory. Whatever
you do, don't delete or change anything in the administrative area! Subversion uses that directory and its
contents to manage your working copy.

Notice that in the previous pair of examples, Subversion chose to create a working copy in a directory named for
the final component of the checkout URL. This occurs only as a convenience to the user when the checkout URL
is the only bit of information provided to the svn checkout command. Subversion's command-line client gives
you additional flexibility, though, allowing you to optionally specify the local directory name that Subversion
should use for the working copy it creates. For example:

svn checkout http://svn.example.com/svn/repo/trunk my-working-copy

my-working-copy/README

$

A

A my-working-copy/INSTALL

A my-working-copy/src/main.c
A

my-working-copy/src/header.h

Checked out revision 8810.

$

If the local directory you specify doesn't yet exist, that's okay—svn checkout will create it for you.

20

Basic Usage

Basic Work Cycle

Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will

use only a few of them. In this section, we'll run through the most common things that you might find yourself

doing with Subversion in the course of a day's work.

The typical work cycle looks like this:

Update your working copy. This involves the use of the svn update command.

. Make your changes. The most common changes that you'll make are edits to the contents of your existing

files. But sometimes you need to add, remove, copy and move files and directories—the svn add, svn delete,
svn copy, and svn move commands handle those sorts of structural changes within the working copy.

. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've

made in your working copy.

. Fix your mistakes. Nobody's perfect, so as you review your changes, you may spot something that's not quite

right. Sometimes the easiest way to fix a mistake is start all over again from scratch. The svn revert command
restores a file or directory to its unmodified state.

. Resolve any conflicts (merge others' changes). In the time it takes you to make and review your changes,

others might have made and published changes, too. You'll want to integrate their changes into your working
copy to avoid the potential out-of-dateness scenarios when you attempt to publish your own. Again, the svn
update command is the way to do this. If this results in local conflicts, you'll need to resolve those using the
svn resolve command.

. Publish (commit) your changes. The svn commit command transmits your changes to the repository where,

if they are accepted, they create the newest versions of all the things you modified. Now others can see your
work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working

copy to receive any changes committed from other working copies since your last update. These might be changes

that other members of your project team have made, or they might simply be changes you've made yourself from

a different computer. To protect your data, Subversion won't allow you commit new changes to out-of-date files

and directories, so it's best to have the latest versions of all your project's files and directories before making

new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$

svn update

Updating '.':

U
U

foo.c

bar.c

Updated to revision 2.

$

In this case, it appears that someone checked in modifications to both foo.c and bar. c since the last time you

updated, and Subversion has updated your working copy to include those changes.

21

Basic Usage

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item
to let you know what actions Subversion performed to bring your working copy up to date. To find out what these
letters mean, run svn help update or see svn update (up) in Chapter 9, Subversion Complete Reference.

Make Your Changes

Now you can get to work and make changes in your working copy. You can make two kinds of changes to your
working copy: file changes and tree changes. You don't need to tell Subversion that you intend to change a file;
just make your changes using your text editor, word processor, graphics program, or whatever tool you would
normally use. Subversion automatically detects which files have been changed, and in addition, it handles binary
files just as easily as it handles text files—and just as efficiently, too. Tree changes are different, and involve
changes to a directory's structure. Such changes include adding and removing files, renaming files or directories,
and copying files or directories to new locations. For tree changes, you use Subversion operations to “schedule”
files and directories for removal, addition, copying, or moving. These changes may take place immediately in
your working copy, but no additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “sym-
link”). A symlink is a file that acts as a sort of transparent reference to some other object in the filesystem,
allowing programs to read and write to those objects indirectly by performing operations on the symlink
itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact
a symlink, as well as the object to which the symlink “points.” When that symlink is checked out to another
working copy on a non-Windows system, Subversion reconstructs a real filesystem-level symbolic link from
the versioned symlink. But that doesn't in any way limit the usability of working copies on systems such
as Windows that do not support symlinks. On such systems, Subversion simply creates a regular text file
whose contents are the path to which the original symlink pointed. While that file can't be used as a symlink
on a Windows system, it also won't prevent Windows users from performing their other Subversion-related
activities.

Here is an overview of the five Subversion subcommands that you'll use most often to make tree changes:
svn add FOO

Use this to schedule the file, directory, or symbolic link FOO to be added to the repository. When you next
commit, FOO will become a child of its parent directory. Note that if FOO is a directory, everything underneath
FOO will be scheduled for addition. If you want only to add FOO itself, pass the --depth=empty option.

svn delete FOO

Use this to schedule the file, directory, or symbolic link FOO to be deleted from the repository. If FOO is a
file or link, it is immediately deleted from your working copy. If FOO is a directory, it is not deleted, but
Subversion schedules it for deletion. When you commit your changes, F00O will be entirely removed from
your working copy and the repository.*

svn copy FOO BAR

'0f course, nothing is ever totally deleted from the repository—just from its HEAD revision. You may continue to access the deleted item in previous
revisions. Should you desire to resurrect the item so that it is again present in HEAD, see the section called “Resurrecting Deleted Items”.

22

Basic Usage

Create a new item BAR as a duplicate of FOO and automatically schedule BAR for addition. When B2R is
added to the repository on the next commit, its copy history is recorded (as having originally come from
FOO). svn copy does not create intermediate directories unless you pass the --parents option.

svn move FOO BAR

This command is exactly the same as running svn copy FOO BAR; svn delete FOO. That is, BAR
is scheduled for addition as a copy of FOO, and FOO is scheduled for removal. svn move does not create
intermediate directories unless you pass the --parents option.

svn mkdir FOO

This command is exactly the same as runningmkdir FOO; svn add FOO. That is, a new directory named
FOO is created and scheduled for addition.

Changing the Repository Without a Working Copy

Subversion does offer ways to immediately commit tree changes to the repository without an explicit com-
mit action. In particular, specific uses of svn mkdir, svn copy, svn move, and svn delete can operate
directly on repository URLSs as well as on working copy paths. Of course, as previously mentioned, svn
import always makes direct changes to the repository.

There are pros and cons to performing URL-based operations. One obvious advantage to doing so is speed:
sometimes, checking out a working copy that you don't already have solely to perform some seemingly
simple action is an overbearing cost. A disadvantage is that you are generally limited to a single, or single
type of, operation at a time when operating directly on URLs. Finally, the primary advantage of a working
copy is in its utility as a sort of “staging area” for changes. You can make sure that the changes you are
about to commit make sense in the larger scope of your project before committing them. And, of course,
these staged changes can be as complex or as a simple as they need to be, yet result in but a single new
revision when committed.

Review Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so, it's
usually a good idea to take a look at exactly what you've changed. By examining your changes before you commit,
you can compose a more accurate log message (a human-readable description of the committed changes stored
alongside those changes in the repository). You may also discover that you've inadvertently changed a file, and
that you need to undo that change before committing. Additionally, this is a good opportunity to review and
scrutinize changes before publishing them. You can see an overview of the changes you've made by using the
svn status command, and you can dig into the details of those changes by using the svn diff command.

Look Ma! No Network!

You can use the commands svn status, svn diff, and svn revert without any network access even if your
repository is across the network. This makes it easy to manage and review your changes-in-progress when
you are working offline or are otherwise unable to contact your repository over the network.

Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside
its working copy administrative area (or prior to version 1.7, potentially multiple administrative areas).
This allows Subversion to report—and revert—local modifications to those files without network access.
This cache (called the text-base) also allows Subversion to send the user's local modifications during a

23

Basic Usage

commit to the server as a compressed delta (or “difference”) against the pristine version. Having this cache
is a tremendous benefit—even if you have a fast Internet connection, it's generally much faster to send only
a file's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than
any other Subversion command.
Because the cvs status command's output was so noisy, and because cvs update not only
0} performs an update, but also reports the status of your local changes, most CVS users have
grown accustomed to using cvs update to report their changes. In Subversion, the update and

status reporting facilities are completely separate. See the section called “Distinction Between
Status and Update” for more details.

If you run svn status at the top of your working copy with no additional arguments, it will detect and report
all file and tree changes you've made.

$ svn status

? scratch.c

A stuff/loot

A stuff/loot/new.c
D stuff/old.c

M bar.c

$

In its default output mode, svn status prints seven columns of characters, followed by several whitespace char-
acters, followed by a file or directory name. The first column tells the status of a file or directory and/or its con-
tents. Some of the most common codes that svn status displays are:

? item

The file, directory, or symbolic link i tem is not under version control.

A item

The file, directory, or symbolic link i tem has been scheduled for addition into the repository.

C item
The file item is in a state of conflict. That is, changes received from the server during an update overlap
with local changes that you have in your working copy (and weren't resolved during the update). You must
resolve this conflict before committing your changes to the repository.

D item

The file, directory, or symbolic link i tem has been scheduled for deletion from the repository.

M item

The contents of the file i tem have been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

24

Basic Usage

svn status also has a --verbose (-v) option, which will show you the status of every item in your working
copy, even if it has not been changed:

$ svn status -v

M 44 23 sally README
44 30 sally INSTALL
M 44 20 harry bar.c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

This is the “long form” output of svn status. The letters in the first column mean the same as before, but the
second column shows the working revision of the item. The third and fourth columns show the revision in which
the item last changed, and who changed it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the
working copy items based on the records stored in the working copy administrative area and on the timestamps
and contents of modified files. But sometimes it is useful to see which of the items in your working copy have
been modified in the repository since the last time you updated your working copy. For this, svn status offers
the --show-updates (-u) option, which contacts the repository and adds information about items that are
out of date:

$ svn status -u -v

M B 44 23 sally README
M 44 20 harry bar.c
w8 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
Status against revision: 46

Notice in the previous example the two asterisks: if you were to run svn update at this point, you would receive
changes to README and trout. c. This tells you some very useful information—because one of those items is
also one that you have locally modified (the file README), you'll need to update and get the servers changes for
that file before you commit, or the repository will reject your commit for being out of date. We discuss this in
more detail later.

svn status can display much more information about the files and directories in your working copy than we've
shown here—for an exhaustive description of svn status and its output, run svn help status or see svn
status (stat, st) in Chapter 9, Subversion Complete Reference.

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command, which displays differences in file content.
When you run svn diff£ at the top of your working copy with no arguments, Subversion will print the changes
you've made to human-readable files in your working copy. It displays those changes in unified diff format, a
format which describes changes as “hunks” (or “snippets™) of a file's content where each line of text is prefixed
with a single-character code: a space, which means the line was unchanged; a minus sign (-), which means the

25

Basic Usage

line was removed from the file; or a plus sign (+), which means the line was added to the file. In the context
of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after your
modifications, respectively.

Here's an example:

$ svn diff
Index: bar.c

-—-— bar.c (revision 3)
+++ bar.c (working copy)
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>

+

+#include <stdio.h>

int main(void) {
- printf ("Sixty-four slices of American Cheese...\n");
+ printf ("Sixty-five slices of American Cheese...\n");
return O;

}

Index: README

-—-— README (revision 3)

+++ README (working copy)

@@ -193,3 +193,4 @@

+Note to self: pick up laundry.

Index: stuff/fish.c

—-—— stuff/fish.c (revision 1)
+++ stuff/fish.c (working copy)
-Welcome to the file known as 'fish'.

-Information on fish will be here soon.

Index: stuff/things/bloo.h

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+things about bloo.

The svn diff command produces this output by comparing your working files against its pristine text-base.
Files scheduled for addition are displayed as files in which every line was added; files scheduled for deletion are
displayed as if every line was removed from those files. The output from svn diff is somehwat compatible with
the patch program—more so with the svn patch subcommand introduced in Subversion 1.7. Patch processing
commands such as these read and apply patch files (or “patches”), which are files that describe differences made
to one or more files. Because of this, you can share the changes you've made in your working copy with someone
else without first committing those changes by creating a patch file from the redirected output of svn diff:

26

Basic Usage

$ svn diff > patchfile
$

Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output
in a different format, specify an external diff program using --diff-cmd and pass any additional flags that
it needs via the --extensions (-x) option. For example, you might want Subversion to defer its difference
calculation and display to the GNU diff program, asking that program to print local modifications made to the
file foo. c in context diff format (another flavor of difference format) while ignoring changes made only to the
case of the letters used in the file's contents:

S svn diff --diff-cmd /usr/bin/diff -x "-i" foo.c

Fix Your Mistakes

Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file
are mistakes. Maybe you shouldn't have changed the file at all, or perhaps it would be easier to make different
changes starting from scratch. You could edit the file again and unmake all those changes. You could try to find
a copy of how the file looked before you changed it, and then copy its contents atop your modified version. You
could attempt to apply those changes to the file again in reverse using patch -R. And there are probably other
approaches you could take.

Fortunately in Subversion, undoing your work and starting over from scratch doesn't require such acrobatics.
Just use the svn revert command:

$ svn status README
M README

$ svn revert README
Reverted 'README'

$ svn status README
$

In this example, Subversion has reverted the file to its premodified state by overwriting it with the pristine
version of the file cached in the text-base area. But note that svn revert can undo any scheduled operation—
for example, you might decide that you don't want to add a new file after all:

$ svn status new-file.txt
? new-file.txt

S svn add new-file.txt

A new-file.txt

$ svn revert new-file.txt
Reverted 'new-file.txt'

S svn status new-file.txt
? new-file.txt

$

Or perhaps you mistakenly removed a file from version control:

27

Basic Usage

$ svn status README
$ svn delete README
D README

$ svn revert README
Reverted 'README'

$ svn status README
$

The svn revert command offers salvation for imperfect people. It can save you huge amounts of time and
energy that would otherwise be spent manually unmaking changes or, worse, disposing of your working copy
and checking out a fresh one just to have a clean slate to work with again.

Resolve Any Conflicts

We've already seen how svn status -u can predict conflicts, but dealing with those conflicts is still something
that remains to be done. Conflicts can occur any time you attempt to merge or integrate (in a very general sense)
changes from the repository into your working copy. By now you know that svn update creates exactly that
sort of scenario—that command's very purpose is to bring your working copy up to date with the repository by
merging all the changes made since your last update into your working copy. So how does Subversion report
these conflicts to you, and how do you deal with them?

Suppose you run svn update and you see this sort of interesting output:

$ svn update

Updating '.':
U INSTALL
G README

Conflict discovered in 'bar.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options:

The U (which stands for “Updated”) and G (for “merGed”) codes are no cause for concern; those files cleanly
absorbed changes from the repository. A file marked with U contains no local changes but was updated with
changes from the repository. One marked with G had local changes to begin with, but the changes coming from
the repository didn't overlap with those local changes.

It's the next few lines which are interesting. First, Subversion reports to you that in its attempt to merge out-
standing server changes into the file bar. c, it has detected that some of those changes clash with local modifi-
cations you've made to that file in your working copy but have not yet committed. Perhaps someone has changed
the same line of text you also changed. Whatever the reason, Subversion instantly flags this file as being in a
state of conflict. It then asks you what you want to do about the problem, allowing you to interactively choose
an action to take toward resolving the conflict. The most commonly used options are displayed, but you can see
all of the options by typing s:

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options: s

(e) edit - change merged file in an editor

28

Basic Usage

(df) diff-full - show all changes made to merged file

(r) resolved - accept merged version of file

(dc) display-conflict - show all conflicts (ignoring merged version)

(mc) mine-conflict - accept my version for all conflicts (same)

(tc) theirs-conflict - accept their version for all conflicts (same)

(mf) mine-full - accept my version of entire file (even non-conflicts)
(tf) theirs-full - accept their version of entire file (same)

(p) postpone - mark the conflict to be resolved later

(1) launch - launch external tool to resolve conflict

(s) show all - show this list

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,

(s) show all options:
Let's briefly review each of these options before we go into detail on what each option means.

(e) edit
Open the file in conflict with your favorite editor, as set in the environment variable EDITOR.

(df) diff-full
Display the differences between the base revision and the conflicted file itself in unified diff format.

(r) resolved
After editing a file, tell svn that you've resolved the conflicts in the file and that it should accept the current
contents—basically that you've “resolved” the conflict.

(dc) display-conflict
Display all conflicting regions of the file, ignoring changes which were successfully merged.

(mc) mine-conflict
Discard any newly received changes from the server which conflict with your local changes to the file under
review. However, accept and merge all non-conflicting changes received from the server for that file.

(tc) theirs-conflict
Discard any local changes which conflict with incoming changes from the server for the file under review.
However, preserve all non-conflicting local changes to that file.

(mf) mine-full
Discard all newly received changes from the server for the file under review, but preserve all your local
changes for that file.

(tf) theirs-full
Discard all your local changes to the file under review and use only the newly received changes from the
server for that file.

(p) postpone
Leave the file in a conflicted state for you to resolve after your update is complete.

(1) launch
Launch an external program to perform the conflict resolution. This requires a bit of preparation beforehand.

29

Basic Usage

(s) show all
Show the list of all possible commands you can use in interactive conflict resolution.

We'll cover these commands in more detail now, grouping them together by related functionality.

Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are that you'd like to see exactly what is in conflict. Two
of the commands available at the interactive conflict resolution prompt can assist you here. The first is the “diff-
full” command (d£), which displays all the local modifications to the file in question plus any conflict regions:

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: df
-—- .svn/text-base/sandwich.txt.svn-base Tue Dec 11 21:33:57 2007
+++ .svn/tmp/tempfile.32.tmp Tue Dec 11 21:34:33 2007
@@ -1 +1,5 @@
-Just buy a sandwich.
+<<<<<<< .mine

+Go pick up a cheesesteak.

+Bring me a taco!
+>>>>>>> | r32

The first line of the diff content shows the previous contents of the working copy (the BASE revision), the next
content line is your change, and the last content line is the change that was just received from the server (usually
the HEAD revision).

The second command is similar to the first, but the “display-conflict” (de) command shows only the conflict
regions, not all the changes made to the file. Additionally, this command uses a slightly different display format
for the conflict regions which allows you to more easily compare the file's contents in those regions as they
would appear in each of three states: original and unedited; with your local changes applied and the server's
conflicting changes ignored; and with only the server's incoming changes applied and your local, conflicting
changes reverted.

After reviewing the information provided by these commands, you're ready to move on to the next action.

Resolving conflict differences interactively

There are several different ways to resolve conflicts interactively—two of which allow you to selectively merge
and edit changes, the rest of which allow you to simply pick a version of the file and move along.

If you wish to choose some combination of your local changes, you can use the “edit” command (e) to manually
edit the file with conflict markers in a text editor (configured per the instructions in the section called “Using
External Editors”). After you've edited the file, if you're satisfied with the changes you've made, you can tell
Subversion that the edited file is no longer in conflict by using the “resolved” command (r).

Regardless of what your local Unix snob will likely tell you, editing the file by hand in your favorite text editor is
a somewhat low-tech way of remedying conflicts (see the section called “Merging conflicts by hand” for a walk-

30

Basic Usage

through). For this reason, Subversion provides the “launch” resolution command (1) to fire up a fancy graphical
merge tool instead (see the section called “External merge”).

If you decide that you don't need to merge any changes, but just want to accept one version of the file or the other,
you can either choose your changes (a.k.a. “mine”) by using the “mine-full” command (m£) or choose theirs by
using the “theirs-full” command (t£).

Finally, there is also a pair of compromise options available. The “mine-conflict” (mec) and “theirs-conflict” (tc)
commands instruct Subversion to select your local changes or the server's incoming changes, respectively, as
the “winner” for all conflicts in the file. But, unlike the “mine-full” and “theirs-full” commands, these commands
preserve both your local changes and changes received from the server in regions of the file where no conflict
was detected.

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital disagreements, but it's actually still about Sub-
version, so read on. If you're doing an update and encounter a conflict that you're not prepared to review or
resolve, you can type p to postpone resolving a conflict on a file-by-file basis when you run svn update. If you
know in advance that you don't want to resolve any conflicts interactively, you can pass the --non-interac-
tive option to svn update, and any file in conflict will be marked with a C automatically.

The C (for “Conflicted”) means that the changes from the server overlapped with your own, and now you have to
manually choose between them after the update has completed. When you postpone a conflict resolution, svn
typically does three things to assist you in noticing and resolving that conflict:

» Subversion prints a C during the update and remembers that the file is in a state of conflict.

« If Subversion considers the file to be mergeable, it places conflict markers—special strings of text that delimit
the “sides” of the conflict—into the file to visibly demonstrate the overlapping areas. (Subversion uses the
svn:mime-type property to decide whether a file is capable of contextual, line-based merging. See the section
called “File Content Type” to learn more.)

« For every conflicted file, Subversion places three extra unversioned files in your working copy:

filename.mine
This is the file as it existed in your working copy before you began the update process. It contains any local
modifications you had made to the file up to that point. (If Subversion considers the file to be unmergeable,
the .mine file isn't created, since it would be identical to the working file.)

filename.rOLDREV
This is the file as it existed in the BASE revision—that is, the unmodified revision of the file in your working
copy before you began the update process—where OLDREV is that base revision number.

filename.rNEWREV
This is the file that your Subversion client just received from the server via the update of your working copy,
where NEWREV corresponds to the revision number to which you were updating (HEAD, unless otherwise
requested).

For example, Sally makes changes to the file sandwich. txt, but does not yet commit those changes. Mean-
while, Harry commits changes to that same file. Sally updates her working copy before committing and she gets
a conflict, which she postpones:

31

Basic Usage

$ svn update

Updating '.':

Conflict discovered in 'sandwich.txt'.

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

€ sandwich.txt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

S 1s -1

sandwich.txt

sandwich.txt.mine

sandwich.txt.rl

sandwich.txt.r2

At this point, Subversion will not allow Sally to commit the file sandwich. txt until the three temporary files
are removed:

$ svn commit -m "Add a few more things"
svn: E155015: Commit failed (details follow) :

svn: E155015: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict

If you've postponed a conflict, you need to resolve the conflict before Subversion will allow you to commit your
changes. You'll do this with the svn resolve command and one of several arguments to the -—accept option.

If you want to choose the version of the file that you last checked out before making your edits, choose the base
argument.

If you want to choose the version that contains only your edits, choose the mine-full argument.

If you want to choose the version that your most recent update pulled from the server (and thus discarding your
edits entirely), choose the theirs-full argument.

However, if you want to pick and choose from your changes and the changes that your update fetched from the
server, merge the conflicted text “by hand” (by examining and editing the conflict markers within the file) and
then choose the working argument.

svn resolve removes the three temporary files and accepts the version of the file that you specified with the --
accept option, and Subversion no longer considers the file to be in a state of conflict:

S svn resolve --accept working sandwich.txt

Resolved conflicted state of 'sandwich.txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can
become as easy as falling off a bike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file
sandwich.txt at the same time. Sally commits her changes, and when you go to update your working copy,
you get a conflict and you're going to have to edit sandwich. txt to resolve the conflict. First, let's take a look
at the file:

32

Basic Usage

$ cat sandwich.txt
Top piece of bread
Mayonnaise

Lettuce

Tomato

Provolone

<<<<<<< .mine
Salami

Mortadella

Prosciutto

Sauerkraut
Grilled Chicken
>S>>>>>> [r2
Creole Mustard

Bottom piece of bread

The strings of less-than signs, equals signs, and greater-than signs are conflict markers and are not part of the
actual data in conflict. You generally want to ensure that those are removed from the file before your next commit.
The text between the first two sets of markers is composed of the changes you made in the conflicting area:

<<<L<L<<< .mine
Salami
Mortadella

Prosciutto

Sauerkraut
Grilled Chicken
>S>>>>>> [r2

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised
when the sandwich arrives and it's not what she wanted. This is where you pick up the phone or walk across the
office and explain to Sally that you can't get sauerkraut from an Italian deli.” Once you've agreed on the changes
you will commit, edit your file and remove the conflict markers:

Top piece of bread
Mayonnaise

Lettuce

Tomato

Provolone

Salami

Mortadella
Prosciutto

Creole Mustard

2And if you ask them for it, they may very well ride you out of town on a rail.

33

Basic Usage

Bottom piece of bread

Now use svn resolve, and you're ready to commit your changes:

$ svn resolve --accept working sandwich.txt
Resolved conflicted state of 'sandwich.txt'

$ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."

Note that svn resolve, unlike most of the other commands we deal with in this chapter, requires that you
explicitly list any filenames that you wish to resolve. In any case, you want to be careful and use svn resolve only
when you're certain that you've fixed the conflict in your file—once the temporary files are removed, Subversion
will let you commit the file even if it still contains conflict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion
creates for you in your working copy—including your file as it was before you updated. You can even use a third-
party interactive merging tool to examine those three files.

Discarding your changes in favor of a newly fetched revision

If you get a conflict and decide that you want to throw out your changes, you can run svn resolve --accept
theirs-full CONFLICTED-PATH and Subversion will discard your edits and remove the temporary files:

$ svn update

Updating '.':

Conflict discovered in 'sandwich.txt'.

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandwich.txt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$ 1ls sandwich.*

sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.rl

$ svn resolve —--accept theirs-full sandwich.txt

Resolved conflicted state of 'sandwich.txt'

$

Punting: using svn revert

If you decide that you want to throw out your changes and start your edits again (whether this occurs after a
conflict or anytime), just revert your changes:

$ svn revert sandwich.txt
Reverted 'sandwich.txt'

S 1ls sandwich.*
sandwich.txt

$

Note that when you revert a conflicted file, you don't have to use svn resolve.

34

Basic Usage

Commit Your Changes

Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your
changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to
supply a log message describing your change. Your log message will be attached to the new revision you create.
If your log message is brief, you may wish to supply it on the command line using the --message (-m) option:

$ svn commit -m "Corrected number of cheese slices."
Sending sandwich. txt
Transmitting file data .

Committed revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell
Subversion to get the message from that file by passing its filename as the value of the --file (-F) option:

$ svn commit -F logmsg
Sending sandwich. txt
Transmitting file data .

Committed revision 4.

If you fail to specify either the --message (-m) or --file (-F) option, Subversion will automatically launch
your favorite editor (see the information on editor-cmd in the section called “Config”) for composing a log
message.

If you're in your editor writing a commit message and decide that you want to cancel your
o/) commit, you can just quit your editor without saving changes. If you've already saved your

commit message, simply delete all the text, save again, and then abort:

S svn commit

Waiting for Emacs...Done

Log message unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a

$

The repository doesn't know or care whether your changes make any sense as a whole; it checks only to make
sure nobody else has changed any of the same files that you did when you weren't looking. If somebody has done
that, the entire commit will fail with a message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"

Sending rules.txt

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/sally/svn-work/sandwich.txt' is out of date

(The exact wording of this error message depends on the network protocol and server you're using, but the idea
is the same in all cases.)

35

Basic Usage

At this point, you need to run svn update, deal with any merges or conflicts that result, and attempt your
commit again.

That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use
to manage your repository and working copy, but most of your day-to-day use of Subversion will involve only
the commands that we've discussed so far in this chapter. We will, however, cover a few more commands that
you'll use fairly often.

Examining History

Your Subversion repository is like a time machine. It keeps a record of every change ever committed and allows
you to explore this history by examining previous versions of files and directories as well as the metadata that
accompanies them. With a single Subversion command, you can check out the repository (or restore an existing
working copy) exactly as it was at any date or revision number in the past. However, sometimes you just want
to peer into the past instead of going into it.

Several commands can provide you with historical data from the repository:

svn diff
Shows line-level details of a particular change

svn log

Shows you broad information: log messages with date and author information attached to revisions and
which paths changed in each revision

svn cat

Retrieves a file as it existed in a particular revision number and displays it on your screen

svn annotate
Retrieves a human-readable file as it existed in a particular revision number, displaying its contents in a
tabular form with last-changed information attributed to each line of the file.

svn list
Displays the files in a directory for any given revision

Examining the Details of Historical Changes

We've already seen svn diff before—it displays file differences in unified diff format; we used it to show the local
modifications made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:
« Examining local changes
« Comparing your working copy to the repository

« Comparing repository revisions
Examining local changes

As we've seen, invoking svn diff with no options will compare your working files to the cached “pristine”
copies in the . svn area:

36

Basic Usage

$ svn diff

Index: rules.txt

-—-—- rules.txt (revision 3)

+++ rules.txt (working copy)

@@ -1,4 +1,5 @@

Be kind to others

Freedom = Responsibility
Everything in moderation

—-Chew with your mouth open

+Chew with your mouth closed
+Listen when others are speaking

$
Comparing working copy to repository

If a single --revision (-r) number is passed, your working copy is compared to the specified revision in the
repository:

$ svn diff -r 3 rules.txt

Index: rules.txt

--—— rules.txt (revision 3)

+++ rules.txt (working copy)

@@ -1,4 +1,5 @@

Be kind to others

Freedom = Responsibility
Everything in moderation

-Chew with your mouth open

+Chew with your mouth closed
+Listen when others are speaking

$
Comparing repository revisions

If two revision numbers, separated by a colon, are passed via --revision (-r), the two revisions are directly
compared:

S svn diff -r 2:3 rules.txt

Index: rules.txt

-—-- rules.txt (revision 2)

+++ rules.txt (revision 3)

@@ -1,4 +1,4 @a

Be kind to others

—-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation

Chew with your mouth open

$

A more convenient way of comparing one revision to the previous revision is to use the --change (-c) option:

37

Basic Usage

S svn diff -c 3 rules.txt

Index: rules.txt

-—-- rules.txt (revision 2)

+++ rules.txt (revision 3)

@@ -1,4 +1,4 @a

Be kind to others

—-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation

Chew with your mouth open

$

Lastly, you can compare repository revisions even when you don't have a working copy on your local machine,
just by including the appropriate URL on the command line:

$ svn diff -c 5 http://svn.example.com/repos/example/trunk/text/rules.txt

Generating a List of Historical Changes

To find information about the history of a file or directory, use the svn log command. svn log will provide you
with a record of who made changes to a file or directory, at what revision it changed, the time and date of that
revision, and—if it was provided—the log message that accompanied the commit:

r3 | sally | 2008-05-15 23:09:28 -0500 (Thu, 15 May 2008) | 1 line

Added include lines and corrected # of cheese slices.

r2 | harry | 2008-05-14 18:43:15 -0500 (Wed, 14 May 2008) | 1 line
Added main () methods.

rl | sally | 2008-05-10 19:50:31 -0500 (Sat, 10 May 2008) | 1 line

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different
range of revisions in a particular order or just a single revision, pass the --revision (-r) option:

Table 2.1. Common log requests

Command Description
svn log -r 5:19 Display logs for revisions 5 through 19 in chronologi-
cal order

38

Basic Usage

Command Description

svn log -r 19:5 Display logs for revisions 5 through 19 in reverse
chronological order

svn log -r 8 Display logs for revision 8 only

You can also examine the log history of a single file or directory. For example:

$ svn log foo.c

$ svn log http://foo.com/svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

Why Does svn log Not Show Me What I Just Committed?

If you make a commit and immediately type svn log with no arguments, you may notice that your most
recent commit doesn't show up in the list of log messages. This is due to a combination of the behavior of
svn commit and the default behavior of svn log. First, when you commit changes to the repository, svn
bumps only the revision of files (and directories) that it commits, so usually the parent directory remains at
the older revision (See the section called “Updates and commits are separate” for an explanation of why).
svn log then defaults to fetching the history of the directory at its current revision, and thus you don't see
the newly committed changes. The solution here is to either update your working copy or explicitly provide
a revision number to svn log by using the --revision (-r) option.

If you want even more information about a file or directory, svn log also takes a --verbose (-v) option. Be-
cause Subversion allows you to move and copy files and directories, it is important to be able to track path
changes in the filesystem. So, in verbose mode, svn log will include a list of changed paths in a revision in its
output:

$ svn log -r 8 -v

r8 | sally | 2008-05-21 13:19:25 -0500 (Wed, 21 May 2008) | 1 line
Changed paths:

M /trunk/code/foo.c

M /trunk/code/bar.h

A /trunk/code/doc/README

Frozzled the sub-space winch.

svn log also takes a --quiet (-g) option, which suppresses the body of the log message. When combined with
--verbose (-v), it gives just the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

39

Basic Usage

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates
on a path in the repository. If you supply no path, Subversion uses the current working directory as the
default target. As a result, if you're operating in a subdirectory of your working copy and attempt to see
the log of a revision in which neither that directory nor any of its children was changed, Subversion will
show you an empty log. If you want to see what changed in that revision, try pointing svn log directly at
the topmost URL of your repository, asin svn log -r 2 */.

As of Subversion 1.7, users of the Subversion command-line can also take advantage of a special output mode
for svn log which integrates a difference report such as is generated by the svn diff command we introduced
earlier. When you invoke svn log with the --di £ £ option, Subversion will append to each revision log chunk
in the log report a diff-style difference report. This is a very convenient way to see both the high-level, semantic
changes and the line-based modifications of a revision all at the same time!

Browsing the Repository

Using svn cat and svn list, you can view various revisions of files and directories without changing the working
revision of your working copy. In fact, you don't even need a working copy to use either one.

Displaying file contents

If you want to examine an earlier version of a file and not necessarily the differences between two files, you can
use svn cat:

$ svn cat -r 2 rules.txt

Be kind to others

Freedom = Chocolate Ice Cream
Everything in moderation

Chew with your mouth open

$
You can also redirect the output directly into a file:

$ svn cat -r 2 rules.txt > rules.txt.v2

S
Displaying line-by-line change attribution

Very similar to the svn cat command we discussed in the previous section is the svn annotate command.
This command also displays the contents of a versioned file, but it does so using a tabular format. Each line of
output shows not only a line of the file's content but also the username, the revision number and (optionally)
the datestamp of the revision in which that line was last modified.

When used with a working copy file target, svn annotate will by default show line-by-line attribution of the
file as it currently appears in the working copy.

40

Basic Usage

S svn annotate rules.txt
1 harry Be kind to others
3 sally Freedom = Responsibility
1 harry Everything in moderation
= - Chew with your mouth closed

= - Listen when others are speaking

Notice that for some lines, there is no attribution provided. In this case, that's because those lines have been
modified in the working copy's version of the file. In this way, svn annotate becomes another way for you to see
which lines in the file you have changed. You can use the BASE revision keyword (see the section called “Revision
Keywords”) to instead see the unmodified form of the file as it resides in your working copy.

$ svn annotate rules.txt@BASE
harry Be kind to others

1

3 sally Freedom = Responsibility
1 harry Everything in moderation
1

harry Chew with your mouth open

The --verbose (-v) option causes svn annotate to also include on each line the datestamp associated with
that line's reported revision number. (This adds a significant amount of width to each line of ouput, so we'll skip
the demonstration here.)

As with svn cat, you can also ask svn annotate to display previous versions of the file. This can be a handy
trick when, after finding out who most recently modified a particular line of interest in the file, you then wish
to see who modified the same line prior to that.

$ svn blame rules.txt -r 2
harry Be kind to others
harry Freedom = Chocolate Ice Cream

1
1
1 harry Everything in moderation
1

harry Chew with your mouth open
Unlike the svn cat command, the functionality of svn annotate is tied heavily to the idea of “lines” of text in
a human-readable file. As such, if you attempt to run the command on a file that Subversion has determined

is not human-readable (per the file's svn:mime-type property—see the section called “File Content Type” for
details), you'll get an error message.

$ svn annotate images/logo.png
Skipping binary file: 'images/logo.png'
$

As revealed in the error message, you can use the --force option to disable this check and proceed with the
annotation as if the file's contents are, in fact, human-readable and line-based. Naturally, if you force Subversion
to try to perform line-based annotation on a nontextual file, you'll get what you asked for: a screenful of nonsense.

$ svn annotate images/logo.png --force
6 harry \211PNG
6 harry "Z
6 harry
7 harry \274\361\MI\300\365\3537X\300..

41

Basic Usage

Depending on your mood at the time you execute this command and your reasons for doing so,
o/) you may find yourself typing svn blame ..or svn praise ..instead of using the canonical

svn annotate command form. That's okay—the Subversion developers anticipated as much,
so those particular command aliases work, too!

Finally, as with many of Subversion's informational commands, you can also reference files in your svn anno-
tate command invocations by their repository URLS, allowing access to this information even when you don't
have ready access to a working copy.

Listing versioned directories

The svn list command shows you what files are in a repository directory without actually downloading the files
to your local machine:

$ svn list http://svn.example.com/repo/project
README

branches/

tags/

trunk/

If you want a more detailed listing, pass the --verbose (-v) flag to get output like this:

S svn list -v http://svn.example.com/repo/project

23351 sally Feb 05 13:26 ./

20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified it, the
size if it is a file, the date it was last modified, and the item's name.

The svn list command with no arguments defaults to the repository URL of the current
Q working directory, not the local working copy directory. After all, if you want a listing of your

local directory, you could use just plain Is (or any reasonable non-Unixy equivalent).

Fetching Older Repository Snapshots

In addition to all of the previous commands, you can use the --revision (-r) option with svn update to take

an entire working copy “back in time”:3

Make the current directory look like it did in r1729.
$ svn update -r 1729
Updating '.':

3See? We told you that Subversion was a time machine.

42

Basic Usage

Many Subversion newcomers attempt to use the preceding svn update example to “undo”
o/) committed changes, but this won't work as you can't commit changes that you obtain from

backdating a working copy if the changed files have newer revisions. See the section called
“Resurrecting Deleted Items” for a description of how to “undo” a commit.

Ifyou'd prefer to create a whole new working copy from an older snapshot, you can do so by modifying the typical
svn checkout command. As with svn update, you can provide the --revision (-r) option. But for reasons
that we cover in the section called “Peg and Operative Revisions”, you might instead want to specify the target
revision as part of Subversion's expanded URL syntax.

Checkout the trunk from rl729.
$ svn checkout http://svn.example.com/svn/repo/trunk@1729 trunk-1729

Checkout the current trunk as it looked in rl1729.
$ svn checkout http://svn.example.com/svn/repo/trunk -r 1729 trunk-1729

Lastly, if you're building a release and wish to bundle up your versioned files and directories, you can use svn
export to create a local copy of all or part of your repository without any . svn administrative directories in-
cluded. The basic syntax of this subcommand is identical to that of svn checkout:

Export the trunk from the latest revision.

$ svn export http://svn.example.com/svn/repo/trunk trunk-export

Export the trunk from rl729.
$ svn export http://svn.example.com/svn/repo/trunk@1729 trunk-1729

Export the current trunk as it looked in rl729.

$ svn export http://svn.example.com/svn/repo/trunk -r 1729 trunk-1729

Sometimes You Just Need to Clean Up

Now that we've covered the day-to-day tasks that you'll frequently use Subversion for, we'll review a few admin-
istrative tasks relating to your working copy.

Disposing of a Working Copy

Subversion doesn't track either the state or the existence of working copies on the server, so there's no server
overhead to keeping working copies around. Likewise, there's no need to let the server know that you're going
to delete a working copy.

If you're likely to use a working copy again, there's nothing wrong with just leaving it on disk until you're ready
to use it again, at which point all it takes is an svn update to bring it up to date and ready for use.

However, if you're definitely not going to use a working copy again, you can safely delete the entire thing using
whatever directory removal capabilities your operating system offers. We recommend that before you do so you

43

Basic Usage

run svn status and review any files listed in its output that are prefixed with a ? to make certain that they're
not of importance.

Recovering from an Interruption

When Subversion modifies your working copy—either your files or its own administrative state—it tries to do
so as safely as possible. Before changing the working copy, Subversion logs its intentions in a private “to-do
list”, of sorts. Next, it performs those actions to effect the desired change, holding a lock on the relevant part of
the working copy while it works. This prevents other Subversion clients from accessing the working copy mid-
change. Finally, Subversion releases its lock and cleans up its private to-do list. Architecturally, this is similar
to a journaled filesystem. If a Subversion operation is interrupted (e.g, if the process is killed or if the machine
crashes), the private to-do list remains on disk. This allows Subversion to return to that list later to complete any
unfinished operations and return your working copy to a consistent state.

This is exactly what svn cleanup does: it searches your working copy and runs any leftover to-do items, re-
moving working copy locks as it completes those operations. If Subversion ever tells you that some part of your
working copy is “locked,” run svn cleanup to remedy the problem. The svn status command will inform you
about administrative locks in the working copy, too, by displaying an L next to those locked paths:

$ svn status
L somedir
M somedir/foo.c
$ svn cleanup
$ svn status

M somedir/foo.c

Don't confuse these working copy administrative locks with the user-managed locks that Subversion users create
when using the lock-modify-unlock model of concurrent version control; see the sidebar The Three Meanings
of “Lock” for clarification.

Dealing with Structural Conflicts

So far, we have only talked about conflicts at the level of file content. When you and your collaborators make
overlapping changes within the same file, Subversion forces you to merge those changes before you can commit.*

But what happens if your collaborators move or delete a file that you are still working on? Maybe there was a
miscommunication, and one person thinks the file should be deleted, while another person still wants to com-
mit changes to the file. Or maybe your collaborators did some refactoring, renaming files and moving around
directories in the process. If you were still working on these files, those modifications may need to be applied
to the files at their new location. Such conflicts manifest themselves at the directory tree structure level rather
than at the file content level, and are known as tree conflicts.

Tree conflicts prior to Subversion 1.6

Prior to Subversion 1.6, tree conflicts could yield rather unexpected results. For example, if a file was locally
modified, but had been renamed in the repository, running svn update would make Subversion carry out

the following steps:

4Well, you could mark files containing conflict markers as resolved and commit them, if you really wanted to. But this is rarely done in practice.

44

Basic Usage

o Check the file to be renamed for local modifications.

« Delete the file at its old location, and if it had local modifications, keep an on-disk copy of the file at the
old location. This on-disk copy now appears as an unversioned file in the working copy.

+ Add the file, as it exists in the repository, at its new location.

When this situation arises, there is the possibility that the user makes a commit without realizing that
local modifications have been left in a now-unversioned file in the working copy, and have not reached the
repository. This gets more and more likely (and tedious) if the number of files affected by this problem
is large.

Since Subversion 1.6, this and other similar situations are flagged as conflicts in the working copy.

As with textual conflicts, tree conflicts prevent a commit from being made from the conflicted state, giving the
user the opportunity to examine the state of the working copy for potential problems arising from the tree con-
flict, and resolving any such problems before committing.

An Example Tree Conflict

Suppose a software project you were working on currently looked like this:

$ svn list -Rv svn://svn.example.com/trunk/

13 harry Sep 06 10:34 ./

13 harry 27 Sep 06 10:34 COPYING

13 harry 41 Sep 06 10:32 Makefile
13 harry 53 Sep 06 10:34 README

13 harry Sep 06 10:32 code/

13 harry 54 Sep 06 10:32 code/bar.c
13 harry 130 Sep 06 10:32 code/foo.c

Later, in revision 14, your collaborator Harry renames the file bar . c to baz . c. Unfortunately, you don't realize
this yet. As it turns out, you are busy in your working copy composing a different set of changes, some of which
also involve modifications to bar. c:

S svn diff

Index: code/foo.c

--— code/foo.c (revision 13)
+++ code/foo.c (working copy)
@@ -3,5 +3,5 @@

int main(int argc, char *argv[])

{

printf ("I don't like being moved around!\n%s", bar()):;

= return 0;
+ return 1;

}

Index: code/bar.c

—-—— code/bar.c (revision 13)

45

Basic Usage

+++ code/bar.c (working copy)
@R -1,4 +1,4 Qe
const char *bar (void)

{
- return "Me neither!\n";

+ return "Well, I do like being moved around!\n";

You first realize that someone else has changed bar . ¢ when your own commit attempt fails:

$ svn commit -m "Small fixes"

Sending code/bar.c

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/svn/project/code/bar.c' is out of date
svn: E160013: File not found: transaction 'l4-e', path '/code/bar.c'
$

At this point, you need to run svn update. Besides bringing our working copy up to date so that you can see
Harry's changes, this also flags a tree conflict so you have the opportunity to evaluate and properly resolve it.

$ svn update

Updating '.':

C code/bar.c
A code/baz.c
U Makefile

Updated to revision 14.
Summary of conflicts:

Tree conflicts: 1

In its output, svn update signifies tree conflicts using a capital C in the fourth output column. svn status
reveals additional details of the conflict:

S svn status
M code/foo.c
A + C code/bar.c
> local edit, incoming delete upon update
Summary of conflicts:

Tree conflicts: 1

Note how bar. c is automatically scheduled for re-addition in your working copy, which simplifies things in case
you want to keep the file.

Because a move in Subversion is implemented as a copy operation followed by a delete operation, and these two
operations cannot be easily related to one another during an update, all Subversion can warn you about is an
incoming delete operation on a locally modified file. This delete operation may be part of a move, or it could be a
genuine delete operation. Determining exactly what semantic change was made to the repository is important—
you want to know just how your own edits fit into the overall trajectory of the project. So read log messages,
talk to your collaborators, study the line-based differences—do whatever you must do—to determine your best
course of action.

46

Basic Usage

In this case, Harry's commit log message tells you what you need to know.

$ svn log -rld ~/trunk

rl4 | harry | 2011-09-06 10:38:17 -0400 (Tue, 06 Sep 2011) | 1 line
Changed paths:

M /Makefile

D /code/bar.c

A /code/baz.c (from /code/bar.c:13)

Rename bar.c to baz.c, and adjust Makefile accordingly.

svn info shows the URLs of the items involved in the conflict. The left URL shows the source of the local side
of the conflict, while the right URL shows the source of the incoming side of the conflict. These URLSs indicate
where you should start searching the repository's history for the change which conflicts with your local change.

$ svn info code/bar.c
Path: code/bar.c
Name: bar.c

URL: http://svn.example.com/svn/repo/trunk/code/bar.c

Tree conflict: local edit, incoming delete upon update
Source left: (file) ~/trunk/code/bar.c@4

Source right: (none) ~/trunk/code/bar.c@5

bar.c is now said to be the victim of a tree conflict. It cannot be committed until the conflict is resolved:

$ svn commit -m "Small fixes"

svn: E155015: Commit failed (details follow) :

svn: E155015: Aborting commit: '/home/svn/project/code/bar.c' remains in confl
ict

$
To resolve this conflict, you must either agree or disagree with the move that Harry made.

If you agree with the move, your bar.c is superfluous. You'll want to delete it and mark the tree conflict as
resolved. But wait: you made changes to that file! Before deleting bar. c, you need to decide if the changes you
made to it need to be applied elsewhere, for example to the new baz . c file where all of bar. c's code now lives.
Let's assume that your changes do need to “follow the move”. Subversion isn't smart enough to do this work for
you®, so you need to migrate your changes manually.

In our example, you could manually re-make your change to bar . c pretty easily—it was, after all, a single-line
change. That's not always the case, though, so we'll show a more scalable approach. We'll first use svn diff to
create a patch file. Then we'll edit the headers of that patch file to point to the new name of our renamed file.
Finally, we re-apply the modified patch to our working copy.

5Tn some cases, Subversion 1.5 and 1.6 would actually handle this for you, but this somewhat hit-or-miss functionality was removed in Subversion

1.7.

47

Basic Usage

S svn diff code/bar.c > PATCHFILE
S cat PATCHFILE

Index: code/bar.c

--- code/bar.c (working copy)
+++ code/bar.c (working copy)
@@ -1,4 +1,4 Q@

const char *bar (void)

{
- return "Me neither!\n";
+ return "Well, I do like being moved around!\n";

}
$ ### Edit PATCHFILE to refer to code/baz.c instead of code/bar.c
$ cat PATCHFILE

Index: code/baz.c

--- code/baz.c (working copy)
+++ code/baz.c (working copy)
@@ -1,4 +1,4 Q@
const char *bar (void)
{
- return "Me neither!\n";
+ return "Well, I do like being moved around!\n";
}
$ svn patch PATCHFILE
U code/baz.c
$

Now that the changes you originally made to bar . c have been successfully reproduced in baz . c, you can delete
bar.c and resolve the conflict, instructing the resolution logic to accept what is currently in the working copy
as the desired result.

$ svn delete --force code/bar.c

D code/bar.c

$ svn resolve --accept=working code/bar.c
Resolved conflicted state of 'code/bar.c'

$ svn status

M code/foo.c
M code/baz.c
$ svn diff

Index: code/foo.c

-—- code/foo.c (revision 14)
+++ code/foo.c (working copy)
@e -3,5 +3,5 @@

int main(int argc, char *argvl[])

{

printf ("I don't like being moved around!\n%s", bar());

= return 0;
+ return 1;

}

Index: code/baz.c

48

Basic Usage

—-—— code/baz.c (revision 14)
+++ code/baz.c (working copy)
@@ -1,4 +1,4 Qe

const char *bar (void)

{
- return "Me neither!\n";

+ return "Well, I do like being moved around!\n";

But what if you do not agree with the move? Well, in that case, you can delete baz . c instead, after making sure
any changes made to it after it was renamed are either preserved or not worth keeping. (Do not forget to also
revert the changes Harry made to Makefile.) Since bar. c is already scheduled for re-addition, there is nothing
else left to do, and the conflict can be marked resolved:

$ svn delete --force code/baz.c
D code/baz.c
$ svn resolve —--accept=working code/bar.c

Resolved conflicted state of 'code/bar.c'

$ svn status

M code/foo.c
A+ code/bar.c
D code/baz.c
M Makefile

$ svn diff

Index: code/foo.c

-—— code/foo.c (revision 14)
+++ code/foo.c (working copy)
@@ -3,5 +3,5 Q@

int main(int argc, char *argv[])

{

printf ("I don't like being moved around!\n%s", bar());

= return 0;
+ return 1;

}
Index: code/bar.c

—-—- code/bar.c (revision 14)
+++ code/bar.c (working copy)
@@ -1,4 +1,4 Qe
const char *bar (void)
{
- return "Me neither!\n";
+ return "Well, I do like being moved around!\n";
}

Index: code/baz.c

--- code/baz.c (revision 14)
+++ code/baz.c (working copy)
@@ -1,4 +0,0 Qe

-const char *bar (void)

49

Basic Usage

-1

- return "Me neither!\n";
-1}

Index: Makefile

—-——- Makefile (revision 14)
+++ Makefile (working copy)
@@ -1,2 +1,2 Q@
foo:
- $(CC) -o $Q@ code/foo.c code/baz.c
+ $(CC) -o $@ code/foo.c code/bar.c

You've now resolved your first tree conflict! You can commit your changes and tell Harry during tea break about
all the extra work he caused for you.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branch-
ing and merging (see Chapter 4, Branching and Merging) and properties (see the section called “Properties”).
However, you may want to take a moment to skim through Chapter 9, Subversion Complete Reference to get an
idea of all the different commands that Subversion has—and how you can use them to make your work easier.

50

Chapter 3. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough
knowledge to use the Subversion client to perform the most common version control operations. You under-
stand how to check out a working copy from a Subversion repository. You are comfortable with submitting and
receiving changes using the svn commit and svn update operations. You've probably even developed a reflex
that causes you to run the svn status command almost unconsciously. For all intents and purposes, you are
ready to use Subversion in a typical environment.

But the Subversion feature set doesn't stop at “common version control operations.” It has other bits of func-
tionality besides just communicating file and directory changes to and from a central repository.

This chapter highlights some of Subversion's features that, while important, may not be part of the typical user's
daily routine. It assumes that you are familiar with Subversion's basic file and directory versioning capabilities.
If you aren't, you'll want to first read Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've
mastered those basics and consumed this chapter, you'll be a Subversion power user!

Revision Specifiers

As we described in the section called “Revisions”, revision numbers in Subversion are pretty straightforward—
integers that keep getting larger as you commit more changes to your versioned data. Still, it doesn't take long
before you can no longer remember exactly what happened in each and every revision. Fortunately, the typical
Subversion workflow doesn't often demand that you supply arbitrary revisions to the Subversion operations you
perform. For operations that do require a revision specifier, you generally supply a revision number that you
saw in a commit email, in the output of some other Subversion operation, or in some other context that would
give meaning to that particular number.

«_»

Referring to revision numbers with an “r” prefix (r314, for example) is an established practice

O/ in Subversion communities, and is both supported and encouraged by many Subversion-re-
lated tools. In most places where you would specify a bare revision number on the command
line, you may also use the r NNN syntax.

But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number
memorized or handy. So besides the integer revision numbers, svn allows as input some additional forms of
revision specifiers: revision keywords and revision dates.

The various forms of Subversion revision specifiers can be mixed and matched when used to

Q specify revision ranges. For example, you can use -r REVI:REV2 where REV] is a revision
/ keyword and REV2 is a revision number, or where REV1 is a date and REV2 is a revision key-
word, and so on. The individual revision specifiers are independently evaluated, so you can

put whatever you want on the opposite sides of that colon.

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead of integer
arguments to the --revision (-r) option, and are resolved into specific revision numbers by Subversion:

51

Advanced Topics

HEAD
The latest (or “youngest”) revision in the repository.
BASE

The revision number of an item in a working copy. If the item has been locally modified, this refers to the
way the item appears without those local modifications.

COMMITTED
The most recent revision prior to, or equal to, BASE, in which an item changed.
PREV

The revision immediately before the last revision in which an item changed. Technically, this boils down to
COMMITTED-1.

As can be derived from their descriptions, the PREV, BASE, and COMMITTED revision keywords are used only
when referring to a working copy path—they don't apply to repository URLs. HEAD, on the other hand, can be
used in conjunction with both of these path types.

Here are some examples of revision keywords in action:

$ svn diff -r PREV:COMMITTED foo.c

shows the last change committed to foo.c

svn log -r HEAD

shows log message for the latest repository commit

S svn diff -r HEAD
compares your working copy (with all of its local changes) to the

latest version of that tree in the repository

S svn diff -r BASE:HEAD foo.c
compares the unmodified version of foo.c with the latest version of

foo.c in the repository

$ svn log -r BASE:HEAD
shows all commit logs for the current versioned directory since you
last updated

$ svn update -r PREV foo.c

rewinds the last change on foo.c, decreasing foo.c's working revision
S svn diff -r BASE:14 foo.c

compares the unmodified version of foo.c with the way foo.c looked

in revision 14

Revision Dates

Revision numbers reveal nothing about the world outside the version control system, but sometimes you need
to correlate a moment in real time with a moment in version history. To facilitate this, the --revision (-r)

52

Advanced Topics

option can also accept as input date specifiers wrapped in curly braces ({ and }). Subversion accepts the standard
ISO-8601 date and time formats, plus a few others. Here are some examples.

svn update -r {2006-02-17}

svn update -r {15:30}

svn update -r {15:30:00.200000}

svn update -r {"2006-02-17 15:30"}

svn update -r {"2006-02-17 15:30 +0230"}
svn update -r {2006-02-17T15:30}

svn update -r {2006-02-17T15:30Z}

svn update -r {2006-02-17T15:30-04:00}
svn update -r {20060217T1530}

svn update -r {20060217T1530Z}

svn update -r {20060217T1530-0500}

v U W W A W n W »n U

Keep in mind that most shells will require you to, at a minimum, quote or otherwise escape
O/ any spaces that are included as part of revision date specifiers. Certain shells may also take

issue with the unescaped use of curly braces, too. Consult your shell's documentation for the
requirements specific to your environment.

When you specify a date, Subversion resolves that date to the most recent revision of the repository as of that
date, and then continues to operate against that resolved revision number:

$ svn log -r {2006-11-28}

rl2 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2006-11-27),
you may think that Subversion should give you the last revision that took place on the 277th of November.
Instead, you'll get back a revision from the 26th, or even earlier. Remember that Subversion will find the
most recent revision of the repository as of the date you give. If you give a date without a timestamp, such
as 2006-11-27, Subversion assumes a time of 00:00:00, so looking for the most recent revision won't
return anything on the 27th.

If you want to include the 27th in your search, you can either specify the 277th with the time ({"2006-11-27
23:59"}), or just specify the next day ({2006-11-28}).

You can also use a range of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log -r {2006-11-20}:{2006-11-29}

Since the timestamp of a revision is stored as an unversioned, modifiable property of the re-
Q vision (see the section called “Properties™), revision timestamps can be changed to represent

complete falsifications of true chronology, or even removed altogether. Subversion's ability to

53

Advanced Topics

correctly convert revision dates into real revision numbers depends on revision datestamps
maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this
ordering isn't maintained, you will likely find that trying to use dates to specify revision ranges
in your repository doesn't always return the data you might have expected.

Peg and Operative Revisions

We copy, move, rename, and completely replace files and directories on our computers all the time. And your
version control system shouldn't get in the way of your doing these things with your version-controlled files and
directories, either. Subversion's file management support is quite liberating, affording almost as much flexibility
for versioned files as you'd expect when manipulating your unversioned ones. But that flexibility means that
across the lifetime of your repository, a given versioned object might have many paths, and a given path might
represent several entirely different versioned objects. This introduces a certain level of complexity to your inter-
actions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such “changes of address.”
For example, if you ask for the revision history log of a particular file that was renamed last week, Subversion
happily provides all those logs—the revision in which the rename itself happened, plus the logs of relevant revi-
sions both before and after that rename. So, most of the time, you don't even have to think about such things.
But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or file is deleted from version control, and then a new
directory or file is created with the same name and added to version control. The thing you deleted and the thing
you later added aren't the same thing. They merely happen to have had the same path—/trunk/object, for
example. What, then, does it mean to ask Subversion about the history of /trunk/object? Are you asking
about the thing currently at that location, or the old thing you deleted from that location? Are you asking about
the operations that have happened to all the objects that have ever lived at that path? Subversion needs a hint
about what you really want.

And thanks to moves, versioned object history can get far more twisted than even that. For example, you might
have a directory named concept, containing some nascent software project you've been toying with. Eventu-
ally, though, that project matures to the point that the idea seems to actually have some wings, so you do the
unthinkable and decide to give the project a name." Let's say you called your software Frabnaggilywort. At this
point, it makes sense to rename the directory to reflect the project's new name, so concept is renamed to frab-
naggilywort. Life goes on, Frabnaggilywort releases a 1.0 version and is downloaded and used daily by hordes
of people aiming to improve their lives.

It's a nice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another think in
the tank. So you make a new directory, concept, and the cycle begins again. In fact, the cycle begins again many
times over the years, each time starting with that old concept directory, then sometimes seeing that directory
renamed as the idea cures, sometimes seeing it deleted when you scrap the idea. Or, to get really sick, maybe you
rename concept to something else for a while, but later rename the thing back to concept for some reason.

In scenarios like these, attempting to instruct Subversion to work with these reused paths can be a little like
instructing a motorist in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main
Street. In a mere 20 minutes, you can cross “Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they
aren't the same street. Our motorist—and our Subversion—need a little more detail to do the right thing.

“You're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski

54

Advanced Topics

Fortunately, Subversion allows you to tell it exactly which Main Street you meant. The mechanism used is called
a peg revision, and you provide these to Subversion for the sole purpose of identifying unique lines of history.
Because at most one versioned object may occupy a path at any given time—or, more precisely, in any one revi-
sion—the combination of a path and a peg revision is all that is needed to unambiguously identify a specific line
of history. Peg revisions are specified to the Subversion command-line client using at syntax, so called because
the syntax involves appending an “at sign” (@) and the peg revision to the end of the path with which the revision
is associated.

But what of the --revision (-r) of which we've spoken so much in this book? That revision (or set of revisions)
is called the operative revision (or operative revision range). Once a particular line of history has been identified
using a path and peg revision, Subversion performs the requested operation using the operative revision(s). To
map this to our Chicagoland streets analogy, if we are told to go to 606 N. Main Street in Wheaton,” we can
think of “Main Street” as our path and “Wheaton” as our peg revision. These two pieces of information identify a
unique path that can be traveled (north or south on Main Street), and they keep us from traveling up and down
the wrong Main Street in search of our destination. Now we throw in “606 N.” as our operative revision of sorts,
and we know exactly where to go.

The Peg Revision Algorithm

The Subversion command-line client performs the peg revision algorithm any time it needs to resolve
possible ambiguities in the paths and revisions provided to it. Here's an example of such an invocation:

S svn command -r OPERATIVE-REV item@PEG-REV
If OPERATIVE-REVis older than PEG-REV, the algorithm is as follows:
1. Locate i temin the revision identified by PEG-REV. There can be only one such object.

2. Trace the object's history backwards (through any possible renames) to its ancestor in the revision 0p-
ERATIVE-REV.

3. Perform the requested action on that ancestor, wherever it is located, or whatever its name might be or
might have been at that time.

But what if OPERATIVE-REV is younger than PEG-REV? Well, that adds some complexity to the theoreti-
cal problem of locating the path in OPERATIVE-REV, because the path's history could have forked multiple
times (thanks to copy operations) between PEG-REVand OPERATIVE-REV. And that's not all—Subversion
doesn't store enough information to performantly trace an object's history forward, anyway. So the algo-
rithm is a little different:

1. Locate i temin the revision identified by OPERATIVE-REV. There can be only one such object.

2. Trace the object's history backward (through any possible renames) to its ancestor in the revision PEG-
REV.

3. Verify that the object's location (path-wise) in PEG-REVis the same asitisin OPERATIVE-REV. If that's
the case, at least the two locations are known to be directly related, so perform the requested action on
the location in OPERATIVE-REV. Otherwise, relatedness was not established, so error out with a loud
complaint that no viable location was found. (Someday, we expect that Subversion will be able to handle

this usage scenario with more flexibility and grace.)

2606 N. Main Street, Wheaton, Illinois, is the home of the Wheaton History Center. It seemed appropriate....

55

Advanced Topics

Note that even when you don't explicitly supply a peg revision or operative revision, they are still present.
For your convenience, the default peg revision is BASE for working copy items and HEAD for repository
URLSs. And when no operative revision is provided, it defaults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 we added our first concept directory, plus an IDEA
file in that directory talking about the concept. After several revisions in which real code was added and tweaked,
we, in revision 20, renamed this directory to frabnaggilywort. By revision 277, we had a new concept, a new
concept directory to hold it, and a new IDEA file to describe it. And then five years and thousands of revisions
flew by, just like they would in any good romance story.

Now, years later, we wonder what the IDEA file looked like back in revision 1. But Subversion needs to know
whether we are asking about how the current file looked back in revision 1, or whether we are asking for the
contents of whatever file lived at concept / IDEA in revision 1. Certainly those questions have different answers,
and because of peg revisions, you can ask those questions. To find out how the current IDEA file looked in that
old revision, you run:

$ svn cat -r 1 concept/IDEA

svn: E195012: Unable to find repository location for 'concept/IDEA' in revision 1

Of course, in this example, the current IDEA file didn't exist yet in revision 1, so Subversion gives an error. The
previous command is shorthand for alonger notation which explicitly lists a peg revision. The expanded notation

1S:

$ svn cat -r 1 concept/IDEAQBASE

svn: E195012: Unable to find repository location for 'concept/IDEA' in revision 1
And when executed, it has the expected results.

The perceptive reader is probably wondering at this point whether the peg revision syntax causes problems for
working copy paths or URLs that actually have at signs in them. After all, how does svn know whether news@11
is the name of a directory in my tree or just a syntax for “revision 11 of news”? Thankfully, while svn will always
assume the latter, there is a trivial workaround. You need only append an at sign to the end of the path, such as
news@11@. svn cares only about the last at sign in the argument, and it is not considered illegal to omit a literal
peg revision specifier after that at sign. This workaround even applies to paths that end in an at sign—you would
use filename@Q to talk about a file named filenameg.

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the address
concepts/IDEA at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/IDEARL

The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification

mechanisms.

Notice that we didn't provide an operative revision this time. That's because when no operative revision is spec-
ified, Subversion assumes a default operative revision that's the same as the peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions frabbing naggily
worts, so this is almost certainly the file that describes the software now called Frabnaggilywort. In fact, we can

56

Advanced Topics

verify this using the combination of an explicit peg revision and explicit operative revision. We know that in
HEAD, the Frabnaggilywort project is located in the frabnaggilywort directory. So we specify that we want
to see how the line of history identified in HEAD as the path frabnaggilywort/IDEA looked in revision 1.

$ svn cat -r 1 frabnaggilywort/IDEAQHEAD

The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification

mechanisms.

And the peg and operative revisions need not be so trivial, either. For example, say frabnaggilywort had
been deleted from HEAD, but we know it existed in revision 20, and we want to see the diffs for its IDEA file
between revisions 4 and 10. We can use peg revision 20 in conjunction with the URL that would have held
Frabnaggilywort's I1DEA file in revision 20, and then use 4 and 10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean.com/projects/frabnaggilywort/IDEA@20
Index: frabnaggilywort/IDEA

--- frabnaggilywort/IDEA (revision 4)

+++ frabnaggilywort/IDEA (revision 10)

@@ -1,5 +1,5 @@

-The idea behind this project is to come up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky
-business, and doing it incorrectly can have serious ramifications, so
-we need to employ over-the-top input validation and data verification
-mechanisms.

+The idea behind this project is to come up with a piece of
+client-server software that can remotely frab a naggily wort.
+Frabbing naggily worts is tricky business, and doing it incorrectly
+can have serious ramifications, so we need to employ over-the-top

+input validation and data verification mechanisms.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions
are that extra hint Subversion needs to clear up ambiguity.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and directories in
its repository. Whole chapters have been devoted to this most fundamental piece of functionality provided by
the tool. And if the versioning support stopped there, Subversion would still be complete from a version control
perspective.

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and
removing versioned metadata on each of your versioned directories and files. We refer to this metadata as prop-
erties, and they can be thought of as two-column tables that map property names to arbitrary values attached
to each item in your working copy. Generally speaking, the names and values of the properties can be whatever
you want them to be, with the constraint that the names must contain only ASCII characters. And the best part

57

Advanced Topics

about these properties is that they, too, are versioned, just like the textual contents of your files. You can modify,
commit, and revert property changes as easily as you can file content changes. And the sending and receiving of
property changes occurs as part of your typical commit and update operations—you don't have to change your
basic processes to accommodate them.
Subversion has reserved the set of properties whose names begin with svn: as its own. While
<> there are only a handful of such properties in use today, you should avoid creating custom
properties for your own needs whose names begin with this prefix. Otherwise, you run the

risk that a future release of Subversion will grow support for a feature or behavior driven by a
property of the same name but with perhaps an entirely different interpretation.

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names
and values attached to them, each revision as a whole may have arbitrary properties attached to it. The same
constraints apply—human-readable names and anything-you-want binary values. The main difference is that
revision properties are not versioned. In other words, if you change the value of, or delete, a revision property,
there's no way, within the scope of Subversion's functionality, to recover the previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you do not use property
names that begin with the prefix svn: as that's the namespace that it sets aside for its own use. And Subversion
does, in fact, use properties—both the versioned and unversioned variety. Certain versioned properties have
special meaning or effects when found on files and directories, or they house a particular bit of information
about the revisions on which they are found. Certain revision properties are automatically attached to revisions
by Subversion's commit process, and they carry information about the revision. Most of these properties are
mentioned elsewhere in this or other chapters as part of the more general topics to which they are related. For an
exhaustive list of Subversion's predefined properties, see the section called “Subversion Properties” in Chapter 9,
Subversion Complete Reference.

While Subversion automatically attaches properties (svn:date, svn:author, svn:log,
O/ and so on) to revisions, it does not presume thereafter the existence of those properties, and
neither should you or the tools you use to interact with your repository. Revision properties
can be deleted programmatically or via the client (if allowed by the repository hooks) with-
out damaging Subversion's ability to function. So, when writing scripts which operate on your
Subversion repository data, do not make the mistake of assuming that any particular revision

property exists on a revision.

In this section, we will examine the utility—both to users of Subversion and to Subversion itself—of property
support. You'll learn about the property-related svn subcommands and how property modifications affect your
normal Subversion workflow.

Why Properties?

Just as Subversion uses properties to store extra information about the files, directories, and revisions that it
contains, you might also find properties to be of similar use. You might find it useful to have a place close to your
versioned data to hang custom metadata about that data.

Say you wish to design a web site that houses many digital photos and displays them with captions and a date-
stamp. Now, your set of photos is constantly changing, so you'd like to have as much of this site automated as
possible. These photos can be quite large, so as is common with sites of this nature, you want to provide smaller
thumbnail images to your site visitors.

58

Advanced Topics

Now, you can get this functionality using traditional files. That is, you can have your image123.3pg and an
imagel23-thumbnail. jpg side by side in a directory. Or if you want to keep the filenames the same, you
might have your thumbnails in a different directory, such as thumbnails/imagel123.jpg. You can also store
your captions and datestamps in a similar fashion, again separated from the original image file. But the problem
here is that your collection of files multiplies with each new photo added to the site.

Now consider the same web site deployed in a way that makes use of Subversion's file properties. Imagine having
a single image file, image123. jpg, with properties set on that file that are named caption, datestamp, and
even thumbnail. Now your working copy directory looks much more manageable—in fact, it looks to the casual
browser like there are nothing but image files in it. But your automation scripts know better. They know that
they can use svn (or better yet, they can use the Subversion language bindings—see the section called “Using
the APIs”) to dig out the extra information that your site needs to display without having to read an index file
or play path manipulation games.

While Subversion places few restrictions on the names and values you use for properties, it has
0/ not been designed to optimally carry large property values or large sets of properties on a given
file or directory. Subversion commonly holds all the property names and values associated
with a single item in memory at the same time, which can cause detrimental performance or

failed operations when extremely large property sets are used.

Custom revision properties are also frequently used. One common such use is a property whose value contains
an issue tracker ID with which the revision is associated, perhaps because the change made in that revision fixes
a bug filed in the tracker issue with that ID. Other uses include hanging more friendly names on the revision—it
might be hard to remember that revision 1935 was a fully tested revision. But if there's, say, a test-results
property on that revision with the value a11 passing, that's meaningful information to have. And Subversion
allows you to easily do this via the --with-revprop option of the svn commit command:

$ svn commit -m "Fix up the last remaining known regression bug." \
--with-revprop "test-results=all passing"

Sending lib/crit bits.c

Transmitting file data .

Committed revision 912.

$

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to them—have a
major shortcoming: while it is a simple matter to set a custom property, finding that property later is a
whole different ball of wax.

Trying to locate a custom revision property generally involves performing a linear walk across all the re-
visions of the repository, asking of each revision, “Do you have the property I'm looking for?” Use the --
with-all-revprops option with the svn log command's XML output mode to facilitate this search.
Notice the presence of the custom revision property testresults in the following output:

$ svn log --with-all-revprops --xml lib/crit bits.c
<?xml version="1.0"2>

<log>

<logentry

59

Advanced Topics

revision="912">
<author>harry</author>
<date>2011-07-29T14:47:41.1698947Z</date>
<msg>Fix up the last remaining known regression bug.</msg>
<revprops>
<property

name="testresults">all passing</property>
</revprops>

</logentry>

Trying to find a custom versioned property is painful, too, and often involves a recursive svn propget
across an entire working copy. In your situation, that might not be as bad as a linear walk across all revi-
sions. But it certainly leaves much to be desired in terms of both performance and likelihood of success,
especially if the scope of your search would require a working copy from the root of your repository.

For this reason, you might choose—especially in the revision property use case—to simply add your meta-
data to the revision's log message using some policy-driven (and perhaps programmatically enforced) for-
matting that is designed to be quickly parsed from the output of svn log. It is quite common to see the
following in Subversion log messages:

Issue(s): 122376, IZ1919
Reviewed by: sally

This fixes a nasty segfault in the wort frabbing process
But here again lies some misfortune. Subversion doesn't yet provide a log message templating mechanism,

which would go a long way toward helping users be consistent with the formatting of their log-embedded
revision metadata.

Manipulating Properties

The svn program affords a few ways to add or modify file and directory properties. For properties with short,
human-readable values, perhaps the simplest way to add a new property is to specify the property name and
value on the command line of the svn propset subcommand:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/button.c
property 'copyright' set on 'calc/button.c'
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to
have a multiline textual, or even binary, property value, you probably do not want to supply that value on the
command line. So the svn propset subcommand takes a --file (-F) option for specifying the name of a file
that contains the new property value.

$ svn propset license -F /path/to/LICENSE calc/button.c
property 'license' set on 'calc/button.c'

$

60

Advanced Topics

There are some restrictions on the names you can use for properties. A property name must start with a letter,
a colon (:), or an underscore (_); after that, you can also use digits, hyphens (-), and periods (.).3

In addition to the propset command, the svn program supplies the propedit command. This command uses
the configured editor program (see the section called “Config”) to add or modify properties. When you run the
command, svn invokes your editor program on a temporary file that contains the current value of the property
(or that is empty, if you are adding a new property). Then, you just modify that value in your editor program until
it represents the new value you wish to store for the property, save the temporary file, and then exit the editor
program. If Subversion detects that you've actually changed the existing value of the property, it will accept that
as the new property value. If you exit your editor without making any changes, no property modification will
occur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at
once. This enables you to modify properties on whole sets of files with a single command. For example, we could
have done the following;:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'calc/Makefile'
property 'copyright' set on 'calc/button.c'

property 'copyright' set on 'calc/integer.c'

All of this property adding and editing isn't really very useful if you can't easily get the stored property value.
So the svn program supplies two subcommands for displaying the names and values of properties stored on
files and directories. The svn proplist command will list the names of properties that exist on a path. Once you
know the names of the properties on the node, you can request their values individually using svn propget.
This command will, given a property name and a path (or set of paths), print the value of the property to the
standard output stream.

$ svn proplist calc/button.c
Properties on 'calc/button.c':
copyright
license
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and the value for all of the prop-
erties. Simply supply the --verbose (-v) option.

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':

copyright

31If you're familiar with XML, this is pretty much the ASCII subset of the syntax for XML “Name”.

61

Advanced Topics

(c) 2006 Red-Bean Software

license

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the recipe for Fitz's famous

red-beans-and-rice.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty
values, you can't remove a property altogether using svn propedit or svn propset. For example, this command
will not yield the desired effect:

$ svn propset license "" calc/button.c
property 'license' set on 'calc/button.c'
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyright
(c) 2006 Red-Bean Software

license

You need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other
property commands:

$ svn propdel license calc/button.c
property 'license' deleted from 'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyright
(c) 2006 Red-Bean Software

Remember those unversioned revision properties? You can modify those, too, using the same svn subcommands
that we just described. Simply add the --revprop command-line parameter and specify the revision whose
property you wish to modify. Since revisions are global, you don't need to specify a target path to these proper-
ty-related commands so long as you are positioned in a working copy of the repository whose revision property
you wish to modify. Otherwise, you can simply provide the URL of any path in the repository of interest (includ-
ing the repository's root URL). For example, you might want to replace the commit log message of an existing
revision.* If your current working directory is part of a working copy of your repository, you can simply run the
svn propset command with no target path:

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness” in commit log messages is perhaps the most common use case for the
--revprop option.

62

Advanced Topics

$ svn propset svn:log "* button.c: Fix a compiler warning." -rll --revprop
property 'svn:log' set on repository revision '11'

$

But even if you haven't checked out a working copy from that repository, you can still effect the property change
by providing the repository's root URL:

$ svn propset svn:log "* button.c: Fix a compiler warning." -rll --revprop \
http://svn.example.com/repos/project
property 'svn:log' set on repository revision '11'

$

Note that the ability to modify these unversioned properties must be explicitly added by the repository adminis-
trator (see the section called “Commit Log Message Correction”). That's because the properties aren't versioned,
so you run the risk of losing information if you aren't careful with your edits. The repository administrator can
set up methods to protect against this loss, and by default, modification of unversioned properties is disabled.

Users should, where possible, use svn propedit instead of svn propset. While the end result
oj of the commands is identical, the former will allow them to see the current value of the prop-
erty that they are about to change, which helps them to verify that they are, in fact, making
the change they think they are making. This is especially true when modifying unversioned
revision properties. Also, it is significantly easier to modify multiline property values in a text

editor than at the command line.

Properties and the Subversion Workflow

Now that you are familiar with all of the property-related svn subcommands, let's see how property modifica-
tions affect the usual Subversion workflow. As we mentioned earlier, file and directory properties are versioned,
just like your file contents. As a result, Subversion provides the same opportunities for merging—cleanly or with
conflicts—someone else's modifications into your own.

As with file contents, your property changes are local modifications, made permanent only when you commit
them to the repository with svn commit. Your property changes can be easily unmade, too—the svn revert
command will restore your files and directories to their unedited states—contents, properties, and all. Also, you
can receive interesting information about the state of your file and directory properties by using the svn status
and svn diff commands.

$ svn status calc/button.c
M calc/button.c
S svn diff calc/button.c

Property changes on: calc/button.c

Added: copyright

-0,0 +1

+(c) 2006 Red-Bean Software
$

Notice how the status subcommand displays M in the second column instead of the first. That is because we have
modified the properties on calc/button. c, but not its textual contents. Had we changed both, we would have
seen M in the first column, too. (We cover svn status in the section called “See an overview of your changes”).

63

Advanced Topics

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else.
If you update your working copy directory and receive property changes on a versioned object that clash
with your own, Subversion will report that the object is in a conflicted state.

$ svn update calc
Updating 'calc':
M calc/Makefile.in
Conflict for property 'linecount' discovered on 'calc/button.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
(s) show all options: p

C calc/button.c
Updated to revision 143.
Summary of conflicts:

Property conflicts: 1

$

Subversion will also create, in the same directory as the conflicted object, a file with a .prej extension
that contains the details of the conflict. You should examine the contents of this file so you can decide how
to resolve the conflict. Until the conflict is resolved, you will see a C in the second column of svn status
output for that object, and attempts to commit your local modifications will fail.

$ svn status calc

© calc/button.c
? calc/button.c.prej
$ cat calc/button.c.prej
Trying to change property 'linecount' from '1267' to '1301',
but property has been locally changed from '1267' to '1256'.
$

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they
should, and then use the svn resolve --accept=working command to alert Subversion that you have
manually resolved the problem.

You might also have noticed the nonstandard way that Subversion currently displays property differences. You
can still use svn diff and redirect its output to create a usable patch file. The patch program will ignore property
patches—as a rule, it ignores any noise it can't understand. This does, unfortunately, mean that to fully apply a
patch generated by svn diff using patch, any property modifications will need to be applied by hand.

Subversion 1.7 improves this situation in two ways. First, its nonstandard display of property differences is at
least machine-readable—an improvement over the display of properties in versions prior to 1.7. But Subver-
sion 1.7 also introduces the svn patch subcommand, designed specifically to handle the additional information
which svn diff's output can carry, applying those changes to the Subversion working copy. Of specific relevance
to our topic, property differences present in patch files generated by svn diff in Subversion 1.7 or better can be
automatically applied to a working copy by the svn patch command. For more about svn patch, see svn patch
in Chapter 9, Subversion Complete Reference.

There's one exception to how property changes are reported by svn diff: changes to
<> Subversion's special svn:mergeinfo property—used to track information about merges

which have been performed in your repository—are described in a more human-readable fash-

64

Advanced Topics

ion. This is quite helpful to the humans who have to read those descriptions. But it also serves
to cause patching programs (including svn patch) to skip those change descriptions as noise.
This might sound like a bug, but it really isn't because this property is intended to be man-
aged solely by the svn merge subcommand. For more about merge tracking, see Chapter 4,
Branching and Merging.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed
elsewhere in this and other chapters—textual diff and merge support, keyword substitution, newline translation,
and so on. But to get the full benefit of properties, they must be set on the right files and directories. Unfortu-
nately, that step can be easily forgotten in the routine of things, especially since failing to set a property doesn't
usually result in an obvious error (at least compared to, say, failing to add a file to version control). To help your
properties get applied to the places that need them, Subversion provides a couple of simple but useful features.

Whenever you introduce a file to version control using the svn add or svn import commands, Subversion tries
to assist by setting some common file properties automatically. First, on operating systems whose filesystems
support an execute permission bit, Subversion will automatically set the svn:executable property on newly
added or imported files whose execute bit is enabled. (See the section called “File Executability” later in this
chapter for more about this property.)

Second, Subversion tries to determine the file's MIME type. If you've configured amime-types-files runtime
configuration parameter, Subversion will try to find a MIME type mapping in that file for your file's extension.
If it finds such a mapping, it will set your file's svn:mime-type property to the MIME type it found. If no
mapping file is configured, or no mapping for your file's extension could be found, Subversion will fall back to
heuristic algorithms to determine the file's MIME type. Depending on how it is built, Subversion 1.7 can make
use of file scanning libraries® to detect a file's type based on its content. Failing all else, Subversion will employ
its own very basic heuristic to determine whether the file contains nontextual content. If so, it automatically sets
the svn :mime-type property on that file to application/octet-stream (the generic “this is a collection
of bytes” MIME type). Of course, if Subversion guesses incorrectly, or if you wish to set the svn:mime-type
property to something more precise—perhaps image/png or application/x-shockwave-flash—you can
always remove or edit that property. (For more on Subversion's use of MIME types, see the section called “File
Content Type” later in this chapter.)

UTF-16 is commonly used to encode files whose semantic content is textual in nature, but
0/ the encoding itself makes heavy use of bytes which are outside the typical ASCII character
byte range. As such, Subversion will tend to classify such files as binary files, much to the
chagrin of users who desire line-based differencing and merging, keyword substitution, and

other behaviors for those files.

Subversion also provides, via its runtime configuration system (see the section called “Runtime Configuration
Area”), amore flexible automatic property setting feature that allows you to create mappings of filename patterns
to property names and values. Once again, these mappings affect adds and imports, and can not only override the
default MIME type decision made by Subversion during those operations, but can also set additional Subversion
or custom properties, too. For example, you might create a mapping that says that anytime you add JPEG files—
ones whose names match the pattern * . yjpg—Subversion should automatically set the svn:mime-type prop-
erty on those files to image/jpeg. Or perhaps any files that match * . cpp should have svn:eol-style set to

5Currently, libmagic is the support library used to accomplish this.

65

Advanced Topics

native, and svn: keywords set to Id. Automatic property support is perhaps the handiest property-related
tool in the Subversion toolbox. See the section called “Config” for more about configuring that support.

Subversion administrators commonly ask if it is possible to configure, on the server side, a set
0/ of property definitions which all connecting clients will automatically consider when operat-
ing on working copies checked out from that server. Unfortunately, Subversion doesn't offer
this feature. Administrators can use hook scripts to validate that the properties added to and
modified on files and directories match the administrator's preferred policies, rejecting com-
mits which are non-compliant in this fashion. (See the section called “Implementing Reposi-
tory Hooks” for more about hook scripts.) But there's no way to automatically dictate those

preferences to Subversion clients beforehand.

File Portability

Fortunately for Subversion users who routinely find themselves on different computers with different operating
systems, Subversion's command-line program behaves almost identically on all those systems. If you know how
to wield svn on one platform, you know how to wield it everywhere.

However, the same is not always true of other general classes of software or of the actual files you keep in Sub-
version. For example, on a Windows machine, the definition of a “text file” would be similar to that used on a
Linux box, but with a key difference—the character sequences used to mark the ends of the lines of those files.
There are other differences, too. Unix platforms have (and Subversion supports) symbolic links; Windows does
not. Unix platforms use filesystem permission to determine executability; Windows uses filename extensions.

Because Subversion is in no position to unite the whole world in common definitions and implementations of
all of these things, the best it can do is to try to help make your life simpler when you need to work with your
versioned files and directories on multiple computers and operating systems. This section describes some of the
ways Subversion does this.

File Content Type

Subversion joins the ranks of the many applications that recognize and make use of Multipurpose Internet Mail
Extensions (MIME) content types. Besides being a general-purpose storage location for a file's content type, the
value of the svn:mime-type file property determines some behavioral characteristics of Subversion itself.

Identifying File Types

Various programs on most modern operating systems make assumptions about the type and format of the
contents of a file by the file's name, specifically its file extension. For example, files whose names end in
. txt are generally assumed to be human-readable; that is, able to be understood by simple perusal rather
than requiring complex processing to decipher. Files whose names end in .png, on the other hand, are
assumed to be of the Portable Network Graphics type—not human-readable at all, and sensible only when
interpreted by software that understands the PNG format and can render the information in that format
as a raster image.

Unfortunately, some of those extensions have changed their meanings over time. When personal comput-
ers first appeared, a file named README . DOC would have almost certainly been a plain-text file, just like
today's . txt files. But by the mid-1990s, you could almost bet that a file of that name would not be a plain-
text file at all, but instead a Microsoft Word document in a proprietary, non-human-readable format. But

66

Advanced Topics

this change didn't occur overnight—there was certainly a period of confusion for computer users over what
exactly they had in hand when they saw a . DOC file.

The popularity of computer networking cast still more doubt on the mapping between a file's name and its
content. With information being served across networks and generated dynamically by server-side scripts,
there was often no real file per se, and therefore no filename. Web servers, for example, needed some other
way to tell browsers what they were downloading so that the browser could do something intelligent with
that information, whether that was to display the data using a program registered to handle that datatype
or to prompt the user for where on the client machine to store the downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a data stream. In 1996,
RFC 2045 was published. It was the first of five RFCs describing MIME. It describes the concept of media
types and subtypes and recommends a syntax for the representation of those types. Today, MIME media
types—or “MIME types”—are used almost universally across email applications, web servers, and other
software as the de facto mechanism for clearing up the file content confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based merging of changes
received from the server during an update into your working file. But for files containing nontextual data, there
is often no concept of a “line.” So, for versioned files whose svn:mime-type property is set to a nontextual
MIME type (generally, something that doesn't begin with text /, though there are exceptions), Subversion does
not attempt to perform contextual merges during updates. Instead, any time you have locally modified a binary
working copy file that is also being updated, your file is left untouched and Subversion creates two new files. One
file has a . o1drev extension and contains the BASE revision of the file. The other file has a . newrev extension
and contains the contents of the updated revision of the file. This behavior is really for the protection of the user
against failed attempts at performing contextual merges on files that simply cannot be contextually merged.

Additionally, since the acts of displaying line-based differences and line-based change attribution are, rather
obviously, dependent on there being a meaningful definition of “line” for a given file, files with nontextual MIME
types will by default trigger errors when used as the targets of svn diff and svn annotate operations. This
can be especially frustrating for users with XML files whose svn :mime-type property is set to something such
as application/xml which is not unambiguously human-readable and as such is treated as nontextual by
Subversion. Fortunately, those subcommands offer a --force option for forcing Subversion to attempt the
operations in spite of the apparent non-human-readability of the files.

The svn :mime-type property, when set to a value that does not indicate textual file contents,
° can cause some unexpected behaviors with respect to other properties. For example, since the
idea of line endings (and therefore, line-ending conversion) makes no sense when applied to
nontextual files, Subversion will prevent you from setting the svn:eol-style property on
such files. This is obvious when attempted on a single file target—svn propset will error out.
But it might not be as clear if you perform a recursive property set, where Subversion will

silently skip over files that it deems unsuitable for a given property.

Subversion provides a number of mechanisms by which to automatically set the svn : mime-type property on
a versioned file. See the section called “Automatic Property Setting” for details.

Also, if the svn:mime-type property is set, then the Subversion Apache module will use its value to populate
the Content-type: HTTP header when responding to GET requests. This gives your web browser a crucial
clue about how to display a file when you use it to peruse your Subversion repository's contents.

%You think that was rough? During that same era, WordPerfect also used . DOC for their proprietary file format's preferred extension!

67

Advanced Topics

File Executability

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute
permission bit. This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file
that needs it. But it would be a monumental hassle to have to remember exactly which files in a freshly checked-
out working copy were supposed to have their executable bits toggled on, and then to have to do that toggling.
So, Subversion provides the svn:executable property as a way to specify that the executable bit for the file
on which that property is set should be enabled, and Subversion honors that request when populating working
copies with such files.

This property has no effect on filesystems that have no concept of an executable permission bit, such as FAT32
and NTFS.” Also, although it has no defined values, Subversion will force its value to * when setting this property.
Finally, this property is valid only on files, not on directories.

End-of-Line Character Sequences

Unless otherwise noted using a versioned file's svn :mime-t ype property, Subversion assumes the file contains
human-readable data. Generally speaking, Subversion uses this knowledge only to determine whether contextual
difference reports for that file are possible. Otherwise, to Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used
in your files. Unfortunately, different operating systems have different conventions about which character se-
quences represent the end of a line of text in a file. For example, the usual line-ending token used by software on
the Windows platform is a pair of ASCII control characters—a carriage return (CR) followed by a line feed (LF).
Unix software, however, just uses the LF character to denote the end of a line.

Not all of the various tools on these operating systems understand files that contain line endings in a format that
differs from the native line-ending style of the operating system on which they are running. So, typically, Unix
programs treat the CR character present in Windows files as a regular character (usually rendered as ~M), and
Windows programs combine all of the lines of a Unix file into one giant line because no carriage return-linefeed
(or CRLF) character combination was found to denote the ends of the lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share a file across different operating
systems. For example, consider a source code file, and developers who edit this file on both Windows and Unix
systems. If all the developers always use tools that preserve the line-ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read a file with foreign EOL markers, or convert the
file's line endings to the native style when the file is saved. If the former is true for a developer, he has to use
an external conversion utility (such as dos2unix or its companion, unix2dos) to prepare the file for editing.
The latter case requires no extra preparation. But both cases result in a file that differs from the original quite
literally on every line! Prior to committing his changes, the user has two choices. Either he can use a conversion
utility to restore the modified file to the same line-ending style that it was in before his edits were made, or he
can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted
time is painful enough. But when commits change every line in a file, this complicates the job of determining
which of those lines were changed in a nontrivial way. Where was that bug really fixed? On what line was a syntax
error introduced?

7The Windows filesystems use file extensions (such as . EXE, .BAT, and . COM) to denote executable files.

68

Advanced Topics

The solution to this problem is the svn:eol-style property. When this property is set to a valid value, Sub-
version uses it to determine what special processing to perform on the file so that the file's line-ending style isn't
flip-flopping with every commit that comes from a different operating system. The valid values are:

native
This causes the file to contain the EOL markers that are native to the operating system on which Subversion
was run. In other words, if a user on a Windows machine checks out a working copy that contains a file with
an svn:eol-style property set to native, that file will contain CRL.F EOL markers. A Unix user checking
out a working copy that contains the same file will see . EOL markers in his copy of the file.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regard-
less of the operating system. This is basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. This
line-ending style is not very common.

Ignoring Unversioned Items

In any given working copy, there is a good chance that alongside all those versioned files and directories are other
files and directories that are neither versioned nor intended to be. Text editors litter directories with backup files.
Software compilers generate intermediate—or even final—files that you typically wouldn't bother to version. And
users themselves drop various other files and directories wherever they see fit, often in version control working
copies.

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of clutter and impurity.
In fact, Subversion counts it as a feature that its working copies are just typical directories, just like unversioned
trees. But these not-to-be-versioned files and directories can cause some annoyance for Subversion users. For
example, because the svn add and svn import commands act recursively by default and don't know which
files in a given tree you do and don't wish to version, it's easy to accidentally add stuff to version control that you
didn't mean to. And because svn status reports, by default, every item of interest in a working copy—including
unversioned files and directories—its output can get quite noisy where many of these things exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the
ways involves the use of Subversion's runtime configuration system (see the section called “Runtime Configura-
tion Area”), and therefore applies to all the Subversion operations that make use of that runtime configuration—
generally those performed on a particular computer or by a particular user of a computer. The other way makes
use of Subversion's directory property support and is more tightly bound to the versioned tree itself, and there-
fore affects everyone who has a working copy of that tree. Both of the mechanisms use file patterns (strings of
literal and special wildcard characters used to match against filenames) to decide which files to ignore.

The Subversion runtime configuration system provides an option, global-ignores, whose value is a white-
space-delimited collection of file patterns. The Subversion client checks these patterns against the names of the
files that are candidates for addition to version control, as well as to unversioned files that the svn status com-

69

Advanced Topics

mand notices. If any file's name matches one of the patterns, Subversion will basically act as if the file didn't
exist at all. This is really useful for the kinds of files that you almost never want to version, such as editor backup
files such as Emacs' *~ and . *~ files.

File Patterns in Subversion

File patterns (also called globs or shell wildcard patterns) are strings of characters that are intended to be
matched against filenames, typically for the purpose of quickly selecting some subset of similar files from
a larger grouping without having to explicitly name each file. The patterns contain two types of characters:
regular characters, which are compared explicitly against potential matches, and special wildcard charac-
ters, which are interpreted differently for matching purposes.

There are different types of file pattern syntaxes, but Subversion uses the one most commonly found in
Unix systems implemented as the fnmat ch system function. It supports the following wildcards, described
here simply for your convenience:

Matches any single character

Matches any string of characters, including the empty string

Begins a character class definition terminated by], used for matching a subset of characters

You can see this same pattern matching behavior at a Unix shell prompt. The following are some examples

of patterns being used for various things:

S 1s ### the book sources

appa-quickstart.xml chO6-server-configuration.xml
appb-svn-for-cvs-users.xml chO7-customizing-svn.xml
appc-webdav.xml ch08-embedding-svn.xml
book.xml chO09-reference.xml
ch0O-preface.xml chl0-world-peace-thru-svn.xml
chOl-fundamental-concepts.xml copyright.xml
ch02-basic-usage.xml foreword.xml
chO03-advanced-topics.xml images/

ch04-branching-and-merging.xml index.xml

chO5-repository-admin.xml styles.css

$ 1ls chx* ### the book chapters

chOO-preface.xml ch06-server-configuration.xml
ch0l-fundamental-concepts.xml ch07-customizing-svn.xml
chO02-basic-usage.xml ch08-embedding-svn.xml
chO03-advanced-topics.xml chO09-reference.xml

chO4-branching-and-merging.xml chlO-world-peace-thru-svn.xml
ch05-repository-admin.xml

SEIIsE ch2l0=+* ### the book chapters whose numbers end in zero
chOO-preface.xml chlO-world-peace-thru-svn.xml

$ 1s ch0[3578]-* ### the book chapters that Mike is responsible for

ch03-advanced-topics.xml ch07-customizing-svn.xml

chO5-repository-admin.xml ch08-embedding-svn.xml

70

Advanced Topics

File pattern matching is a bit more complex than what we've described here, but this basic usage level tends
to suit the majority of Subversion users.

When found on a versioned directory, the svn: ignore property is expected to contain a list of newline-delimit-
ed file patterns that Subversion should use to determine ignorable objects in that same directory. These patterns
do not override those found in the g1obal-ignores runtime configuration option, but are instead appended
to that list. And it's worth noting again that, unlike the global-ignores option, the patterns found in the
svn:ignore property apply only to the directory on which that property is set, and not to any of its subdirec-
tories. The svn:ignore property is a good way to tell Subversion to ignore files that are likely to be present in
every user's working copy of that directory, such as compiler output or—to use an example more appropriate to
this book—the HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook
XML files to a more legible output format.

Subversion's support for ignorable file patterns extends only to the one-time process of adding
O/ unversioned files and directories to version control. Once an object is under Subversion's con-
trol, the ignore pattern mechanisms no longer apply to it. In other words, don't expect Sub-
version to avoid committing changes you've made to a versioned file simply because that file's

name matches an ignore pattern—Subversion always notices all of its versioned objects.

Ignore Patterns for CVS Users

The Subversion svn: ignore property is very similar in syntax and function to the CVS . cvsignore file.
In fact, if you are migrating a CVS working copy to Subversion, you can directly migrate the ignore patterns
by using the . cvsignore file as input file to the svn propset command:

S svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'

$

There are, however, some differences in the ways that CVS and Subversion handle ignore patterns. The
two systems use the ignore patterns at some different times, and there are slight discrepancies in what the
ignore patterns apply to. Also, Subversion does not recognize the use of the ! pattern as a reset back to
having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste and ties more closely to a user's
particular tool chain than to the details of any particular working copy's needs. So, the rest of this section will
focus on the svn:ignore property and its uses.

Say you have the following output from svn status:

$ svn status calc

M calc/button.c

? calc/calculator
? calc/data.c

? calc/debug log

71

Advanced Topics

? calc/debug log.l
? calc/debug log.2.gz
? calc/debug log.3.gz

In this example, you have made some property modifications to but ton. c, but in your working copy, you also
have some unversioned files: the latest calculator program that you've compiled from your source code, a
source file named data. c, and a set of debugging output logfiles. Now, you know that your build system always
results in the calculator program being generated.8 And you know that your test suite always leaves those
debugging logfiles lying around. These facts are true for all working copies of this project, not just your own. And
you know that you aren't interested in seeing those things every time you run svn status, and you are pretty
sure that nobody else is interested in them either. So you use svn propedit svn:ignore calctoadd some
ignore patterns to the calc directory.

$ svn propget svn:ignore calc
calculator

debug log*

$

After you've added this property, you will now have a local property modification on the calc directory. But
notice what else is different about your svn status output:

$ svn status

M calc
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Your calculator compiled program and all those logfiles are
still in your working copy; Subversion just isn't constantly reminding you that they are present and unversioned.
And now with all the uninteresting noise removed from the display, you are left with more intriguing items—
such as that source code file data . c that you probably forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If you actually want
to see the ignored files as part of the status report, you can pass the --no-ignore option to Subversion:

$ svn status --no-ignore
M calc
M calc/button.c
I calc/calculator
? calc/data.c

calc/debug log
calc/debug log.l
calc/debug log.2.gz

HoH H A

calc/debug log.3.gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import. Both of these
operations involve asking Subversion to begin managing some set of files and directories. Rather than force the
user to pick and choose which files in a tree she wishes to start versioning, Subversion uses the ignore patterns—
both the global and the per-directory lists—to determine which files should not be swept into the version control

81sn't that the whole point of a build system?

72

Advanced Topics

system as part of a larger recursive addition or import operation. And here again, you can use the --no-ignore
option to tell Subversion to disregard its ignores list and operate on all the files and directories present.

mand. Shell wildcards are expanded into an explicit list of targets before Subversion operates
on them, so running svn SUBCOMMAND * is just like running svn SUBCOMMAND filel
file2 file3 ... In the case of the svn add command, this has an effect similar to passing

0 Even if svn:ignore is set, you may run into problems if you use shell wildcards in a com-

the --no-ignore option. So instead of using a wildcard, use svn add --force . todo
a bulk scheduling of unversioned things for addition. The explicit target will ensure that the
current directory isn't overlooked because of being already under version control, and the --
force option will cause Subversion to crawl through that directory, adding unversioned files
while still honoring the svn: ignore property and global-ignores runtime configuration
variable. Be sure to also provide the --depth files option to the svn add command if you
don't want a fully recursive crawl for things to add.

Keyword Substitution

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned file
—into the contents of the file itself. Keywords generally provide information about the last modification made
to the file. Because this information changes each time the file changes, and more importantly, just after the file
changes, it is a hassle for any process except the version control system to keep the data completely up to date.
Left to human authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on which it was modified.
You could burden every author of that document to, just before committing their changes, also tweak the part
of the document that describes when it was last changed. But sooner or later, someone would forget to do that.
Instead, simply ask Subversion to perform keyword substitution on the LastChangedDate keyword. You con-
trol where the keyword is inserted into your document by placing a keyword anchor at the desired location in
the file. This anchor is just a string of text formatted as $ KeywordName$.

All keywords are case-sensitive where they appear as anchors in files: you must use the correct capitalization for
the keyword to be expanded. You should consider the value of the svn : keywords property to be case-sensitive,
too—certain keyword names will be recognized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the following keywords,
some of which have aliases that you can also use:

Date
This keyword describes the last time the file was known to have been changed in the repository, and is of
the form sbDate: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) S.Itmay also be specified
as LastChangedDate. Unlike the 1d keyword, which uses UTC, the Date keyword displays dates using
the local time zone.

Revision
This keyword describes the last known revision in which this file changed in the repository, and looks some-
thing like SRevision: 144 $.It may also be specified as LastChangedRevision or Rev.

Author
This keyword describes the last known user to change this file in the repository, and looks something like
$author: harry $.It may also be specified as LastChangedBy.

73

Advanced Topics

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and looks something
like SHeadURL: http://svn.example.com/repos/trunk/calc.c $.Itmaybe abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks something like $1d:
calc.c 148 2006-07-28 21:30:43% sally S, and isinterpreted to mean that the file calc.c was
last changed in revision 148 on the evening of July 28, 2006 by the user sally. The date displayed by this
keyword is in UTC, unlike that of the Date keyword (which uses the local time zone).

Header
This keyword is similar to the 1d keyword but contains the full URL of the latest revision of the item,
identical to HeadURL. Its substitution looks something like $Header: http://svn.example.com/re-
pos/trunk/calc.c 148 2006-07-28 21:30:43Z sally S.

Several of the preceding descriptions use the phrase “last known” or similar wording. Keep in mind that key-
word expansion is a client-side operation, and your client “knows” only about changes that have occurred in the
repository when you update your working copy to include those changes. If you never update your working copy,
your keywords will never expand to different values even if those versioned files are being changed regularly in
the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform
textual substitutions on your file contents unless explicitly asked to do so. After all, you might be writing a doc-
ument® about how to use keywords, and you don't want Subversion to substitute your beautiful examples of
unsubstituted keyword anchors!

To tell Subversion whether to substitute keywords on a particular file, we again turn to the property-related
subcommands. The svn: keywords property, when set on a versioned file, controls which keywords will be
substituted on that file. The value is a space-delimited list of keyword names or aliases.

For example, say you have a versioned file named weather. txt that looks like this:

Here is the latest report from the front lines.
$LastChangedDate$
SRev$

Cumulus clouds are appearing more frequently as summer approaches.

With no svn: keywords property set on that file, Subversion will do nothing special. Now, let's enable substi-
tution of the LastChangedDate keyword.

$ svn propset svn:keywords "Date Author" weather.txt
property 'svn:keywords' set on 'weather.txt'

$

Now you have made a local property modification on the weather.txt file. You will see no changes to the
file's contents (unless you made some of your own prior to setting the property). Notice that the file contained a
keyword anchor for the Rev keyword, yet we did not include that keyword in the property value we set. Subver-
sion will happily ignore requests to substitute keywords that are not present in the file and will not substitute
keywords that are not present in the svn: keywords property value.

9

... or maybe even a section of a book ...

74

Advanced Topics

Immediately after you commit this property change, Subversion will update your working file with the new
substitute text. Instead of seeing your keyword anchor $LastChangedDates, you'll see its substituted result.
That result also contains the name of the keyword and continues to be delimited by the dollar sign ($) characters.
And as we predicted, the Rev keyword was not substituted because we didn't ask for it to be.

Note also that we set the svn:keywords property to Date Author, yet the keyword anchor used the alias
$LastChangedDate$ and still expanded correctly:

Here is the latest report from the front lines.
$LastChangedDate: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
SRev$

Cumulus clouds are appearing more frequently as summer approaches.

If someone else now commits a change to weather . txt, your copy of that file will continue to display the same
substituted keyword value as before—until you update your working copy. At that time, the keywords in your
weather. txt file will be resubstituted with information that reflects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository has a single, globally
increasing revision number, many people assume that it is this number that is reflected by the sSrRev$
keyword's value. But Rev expands to show the last revision in which the file changed, not the last revision
to which it was updated. Understanding this clears the confusion, but frustration often remains—without
the support of a Subversion keyword to do so, how can you automatically get the global revision number
into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion, which was de-
signed for just this purpose. It crawls your working copy and generates as output the revision(s) it finds.
You can use this program, plus some additional tooling, to embed that revision information into your files.
For more information on svnversion, see the section called “svnversion—Subversion Working Copy Ver-
sion Info” in Chapter 9, Subversion Complete Reference.

You can also instruct Subversion to maintain a fixed length (in terms of the number of bytes consumed) for
the substituted keyword. By using a double colon (: :) after the keyword name, followed by a number of space
characters, you define that fixed width. When Subversion goes to substitute your keyword for the keyword and
its value, it will essentially replace only those space characters, leaving the overall width of the keyword field
unchanged. If the substituted value is shorter than the defined field width, there will be extra padding characters
(spaces) at the end of the substituted field; if it is too long, it is truncated with a special hash (#) character just
before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflecting the document's
Subversion keywords. Using the original Subversion keyword substitution syntax, your file might look something
like:

SRev$S: Revision of last commit
SAuthor$: Author of last commit
SDate$: Date of last commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword sub-
stitution enabled, of course), you see:

75

Advanced Topics

SRev: 12 $S: Revision of last commit
SAuthor: harry $: Author of last commit
SDate: 2006-03-15 02:33:03 -0500 (Wed, 15 Mar 2006) $: Date of last commit

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it
again looks tabular. But that holds only as long as the keyword values are the same width. If the last committed
revision rolls into a new place value (say, from 99 to 100), or if another person with a longer username commits
the file, stuff gets all crooked again. However, if you are using Subversion 1.2 or later, you can use the new fixed-
length keyword syntax and define some field widths that seem sane, so your file might look like this:

SRev: : $: Revision of last commit
SAuthor: : $: Author of last commit
SDate: : $: Date of last commit

You commit this change to your file. This time, Subversion notices the new fixed-length keyword syntax and
maintains the width of the fields as defined by the padding you placed between the double colon and the trailing
dollar sign. After substitution, the width of the fields is completely unchanged—the short values for Rev and
Author are padded with spaces, and the long Date field is truncated by a hash character:

SRev:: 13 $: Revision of last commit
SAuthor:: harry $: Author of last commit
SDate:: 2006-03-15 0#$: Date of last commit

The use of fixed-length keywords is especially handy when performing substitutions into complex file formats
that themselves use fixed-length fields for data, or for which the stored size of a given data field is overbear-
ingly difficult to modify from outside the format's native application. Of course, where binary file formats are
concerned, you must always take great care that any keyword substitution you introduce—fixed-length or oth-
erwise—does not violate the integrity of that format. While it might sound easy enough, this can be an astonish-
ingly difficult task for most of the popular binary file formats in use today, and not something to be undertaken
by the faint of heart!

corruption of multibyte values exists. For example, a username that contains some multibyte
UTF-8 characters might suffer truncation in the middle of the string of bytes that make up one
of those characters. The result will be a mere truncation when viewed at the byte level, but will
likely appear as a string with an incorrect or garbled final character when viewed as UTF-8
text. It is conceivable that certain applications, when asked to load the file, would notice the
broken UTF-8 text and deem the entire file corrupt, refusing to operate on the file altogether.
So, when limiting keywords to a fixed size, choose a size that allows for this type of byte-wise

Q Be aware that because the width of a keyword field is measured in bytes, the potential for

expansion.

Sparse Directories

By default, most Subversion operations on directories act in a recursive manner. For example, svn checkout
creates a working copy with every file and directory in the specified area of the repository, descending recursively
through the repository tree until the entire structure is copied to your local disk. Subversion 1.5 introduces a
feature called sparse directories (or shallow checkouts) that allows you to easily check out a working copy—or a

76

Advanced Topics

portion of a working copy—more shallowly than full recursion, with the freedom to bring in previously ignored
files and subdirectories at a later time.

For example, say we have a repository with a tree of files and directories with names of the members of a human
family with pets. (It's an odd example, to be sure, but bear with us.) A regular svn checkout operation will give
us a working copy of the whole tree:

svn checkout file:///var/svn/repos mom
mom/son
mom/son/grandson
mom/daughter

mom/daughter/granddaughterl

mom/daughter/granddaughterl/bunny?2. txt
mom/daughter/granddaughter?2
mom/daughter/fishie. txt

$
A
A
A
A
A mom/daughter/granddaughterl/bunnyl.txt
A
A
A
A mom/kittyl.txt

A

mom/doggiel.txt
Checked out revision 1.

$

Now, let's check out the same tree again, but this time we'll ask Subversion to give us only the topmost directory
with none of its children at all:

$ svn checkout file:///var/svn/repos mom-empty —--depth empty
Checked out revision 1

$

Notice that we added to our original svn checkout command line a new --depth option. This option is present
on many of Subversion's subcommands and is similar to the --non-recursive (-N) and --recursive (-
R) options. In fact, it combines, improves upon, supercedes, and ultimately obsoletes these two older options.
For starters, it expands the supported degrees of depth specification available to users, adding some previously
unsupported (or inconsistently supported) depths. Here are the depth values that you can request for a given
Subversion operation:

-—-depth empty
Include only the immediate target of the operation, not any of its file or directory children.

-—-depth files
Include the immediate target of the operation and any of its immediate file children.

--depth immediates
Include the immediate target of the operation and any of its immediate file or directory children. The direc-
tory children will themselves be empty.

--depth infinity
Include the immediate target, its file and directory children, its children's children, and so on to full recur-
sion.

Of course, merely combining two existing options into one hardly constitutes a new feature worthy of a whole
section in our book. Fortunately, there is more to this story. This idea of depth extends not just to the operations
you perform with your Subversion client, but also as a description of a working copy citizen's ambient depth,

77

Advanced Topics

which is the depth persistently recorded by the working copy for that item. Its key strength is this very persis-
tence—the fact that it is sticky. The working copy remembers the depth you've selected for each item in it until
you later change that depth selection; by default, Subversion commands operate on the working copy citizens
present, regardless of their selected depth settings.

You can check the recorded ambient depth of a working copy using the svn info command.
o/) If the ambient depth is anything other than infinite recursion, svn info will display a line

describing that depth value:

$ svn info mom-immediates | grep "“Depth:"
Depth: immediates

$

Our previous examples demonstrated checkouts of infinite depth (the default for svn checkout) and empty
depth. Let's look now at examples of the other depth values:

$ svn checkout file:///var/svn/repos mom-files --depth files

A mom-files/kittyl.txt

A mom-files/doggiel.txt

Checked out revision 1.

$ svn checkout file:///var/svn/repos mom-immediates --depth immediates
A mom-immediates/son

A mom-immediates/daughter

A mom-immediates/kittyl.txt

A mom-immediates/doggiel.txt

Checked out revision 1.

$
As described, each of these depths is something more than only the target, but something less than full recursion.

We've used svn checkout as an example here, but you'll find the --depth option present on many other Sub-
version commands, too. In those other commands, depth specification is a way to limit the scope of an operation
to some depth, much like the way the older --non-recursive (-N) and --recursive (-R) options behave.
This means that when operating on a working copy of some depth, while requesting an operation of a shallower
depth, the operation is limited to that shallower depth. In fact, we can make an even more general statement:
given a working copy of any arbitrary—even mixed—ambient depth, and a Subversion command with some re-
quested operational depth, the command will maintain the ambient depth of the working copy members while
still limiting the scope of the operation to the requested (or default) operational depth.

In addition to the --depth option, the svn update and svn switch subcommands also accept a second depth-
related option: --set-depth. Itis with this option that you can change the sticky depth of a working copy item.
Watch what happens as we take our empty-depth checkout and gradually telescope it deeper using svn update
--set-depth NEW-DEPTH TARGET

$ svn update --set-depth files mom-empty
Updating 'mom-empty':

A mom-empty/kittiel.txt

A mom-empty/doggiel. txt

Updated to revision 1.

$ svn update --set-depth immediates mom-empty

78

Advanced Topics

Updating 'mom-empty':

A mom-empty/son

A mom-empty/daughter

Updated to revision 1.

$ svn update --set-depth infinity mom-empty
Updating 'mom-empty':

mom-empty/son/grandson
mom-empty/daughter/granddaughterl
mom-empty/daughter/granddaughterl/bunnyl.txt
mom-empty/daughter/granddaughterl/bunny?2.txt
mom-empty/daughter/granddaughter2

oo oo

mom-empty/daughter/fishiel.txt
Updated to revision 1.

$
As we gradually increased our depth selection, the repository gave us more pieces of our tree.

In our example, we operated only on the root of our working copy, changing its ambient depth value. But we
can independently change the ambient depth value of any subdirectory inside the working copy, too. Careful
use of this ability allows us to flesh out only certain portions of the working copy tree, leaving other portions
absent altogether (hence the “sparse” bit of the feature's name). Here's an example of how we might build out
a portion of one branch of our family's tree, enable full recursion on another branch, and keep still other pieces
pruned (absent from disk).

S rm -rf mom-empty

$ svn checkout file:///var/svn/repos mom-empty —--depth empty
Checked out revision 1.

$ svn update --set-depth empty mom-empty/son

Updating 'mom-empty/son':

A mom-empty/son

Updated to revision 1.

$ svn update --set-depth empty mom-empty/daughter

Updating 'mom-empty/daughter':

A mom-empty/daughter

Updated to revision 1.

$ svn update --set-depth infinity mom-empty/daughter/granddaughterl
Updating 'mom-empty/daughter/granddaughterl’':

A mom-empty/daughter/granddaughterl

A mom-empty/daughter/granddaughterl/bunnyl.txt

A mom-empty/daughter/granddaughterl/bunny?2.txt

Updated to revision 1.

$

Fortunately, having a complex collection of ambient depths in a single working copy doesn't complicate the
way you interact with that working copy. You can still make, revert, display, and commit local modifications in
your working copy without providing any new options (including --depth and --set-depth) to the relevant
subcommands. Even svn update works as it does elsewhere when no specific depth is provided—it updates the
working copy targets that are present while honoring their sticky depths.

You might at this point be wondering, “So what? When would I use this?” One scenario where this feature finds
utility is tied to a particular repository layout, specifically where you have many related or codependent projects
or software modules living as siblings in a single repository location (trunk/projectl, trunk/project2,

79

Advanced Topics

trunk/project3, etc.). In such scenarios, it might be the case that you personally care about only a handful
of those projects—maybe some primary project and a few other modules on which it depends. You can check
out individual working copies of all of these things, but those working copies are disjoint and, as a result, it can
be cumbersome to perform operations across several or all of them at the same time. The alternative is to use
the sparse directories feature, building out a single working copy that contains only the modules you care about.
You'd start with an empty-depth checkout of the common parent directory of the projects, and then update with
infinite depth only the items you wish to have, like we demonstrated in the previous example. Think of it like
an opt-in system for working copy citizens.

The original (Subversion 1.5) implementation of shallow checkouts was good, but didn't support de-telescoping
of working copy items. Subversion 1.6 remedied this problem. For example, running svn update --set-
depth empty in an infinite-depth working copy will discard everything but the topmost directory.'® Subver-
sion 1.6 also introduced another supported value for the --set-depth option: exclude. Using --set-depth
exclude with svn update will cause the update target to be removed from the working copy entirely—a direc-
tory target won't even be left present-but-empty. This is especially handy when there are more things that you'd
like to keep in a working copy than things you'd like to not keep.

Consider a directory with hundreds of subdirectories, one of which you would like to omit from your working
copy. Using an “additive” approach to sparse directories, you might check out the directory with an empty depth,
then explicitly telescope (using svn update --set-depth infinity) each and every subdirectory of the
directory except the one you don't care about.

$ svn checkout http://svn.example.com/repos/many-dirs —--depth empty
$ svn update --set-depth infinity many-dirs/wanted-dir-1
$ svn update --set-depth infinity many-dirs/wanted-dir-2
$ svn update --set-depth infinity many-dirs/wanted-dir-3

and so on, and so on,

This could be quite tedious, especially since you don't even have stubs of these directories in your working copy
to deal with. Such a working copy would also have another characteristic that you might not expect or desire: if
someone else creates any new subdirectories in this top-level directory, you won't receive those when you update
your working copy.

Beginning with Subversion 1.6, you can take a different approach. First, check out the directory in full. Then run
svn update --set-depth exclude on the one subdirectory you don't care about.

$ svn checkout http://svn.example.com/repos/many-dirs

$ svn update --set-depth exclude many-dirs/unwanted-dir
D many-dirs/unwanted-dir
$

This approach leaves your working copy with the same stuff as in the first approach, but any new subdirectories
which appear in the top-level directory would also show up when you update your working copy. The downside

19Safely, of course. As in other situations, Subversion will leave on disk any files you've modified or which aren't versioned.

80

Advanced Topics

of this approach is that you have to actually check out that whole subdirectory that you don't even want just so
you can tell Subversion that you don't want it. This might not even be possible if that subdirectory is too large to
fit on your disk (which might, after all, be the very reason you don't want it in your working copy).

While the functionality for excluding an existing item from a working copy was hung off of
0/ the svn update command, you might have noticed that the output from svn update --
set-depth exclude differs from that of a normal update operation. This output betrays the
fact that, under the hood, exclusion is a completely client-side operation, very much unlike a

typical update.

In such a situation, you might consider a compromise approach. First, check out the top-level directory with --
depth immediates.Then, exclude the directory youdon't want using svn update --set-depth exclude.
Finally, telescope all the items that remain to infinite depth, which should be fairly easy to do because they are
all addressable in your shell.

$ svn checkout http://svn.example.com/repos/many-dirs —--depth immediates
$ svn update --set-depth exclude many-dirs/unwanted-dir
D many-dirs/unwanted-dir

$ svn update --set-depth infinity many-dirs/*

$

Once again, your working copy will have the same stuff as in the previous two scenarios. But now, any time
a new file or subdirectory is committed to the top-level directory, you'll receive it—at an empty depth—when

you update your working copy. You can now decide what to do with such newly appearing working copy items:
expand them into infinite depth, or exclude them altogether.

Locking

Subversion's copy-modify-merge version control model lives and dies on its data merging algorithms—specifi-
cally on how well those algorithms perform when trying to resolve conflicts caused by multiple users modifying
the same file concurrently. Subversion itself provides only one such algorithm: a three-way differencing algo-
rithm that is smart enough to handle data at a granularity of a single line of text. Subversion also allows you to
supplement its content merge processing with external differencing utilities (as described in the section called
“External diff3” and the section called “External merge”), some of which may do an even better job, perhaps
providing granularity of a word or a single character of text. But common among those algorithms is that they
generally work only on text files. The landscape starts to look pretty grim when you start talking about content
merges of nontextual file formats. And when you can't find a tool that can handle that type of merging, you begin
to run into problems with the copy-modify-merge model.

Let's look at a real-life example of where this model runs aground. Harry and Sally are both graphic designers
working on the same project, a bit of marketing collateral for an automobile mechanic. Central to the design of a
particular poster is an image of a car in need of some bodywork, stored in a file using the PNG image format. The
poster's layout is almost finished, and both Harry and Sally are pleased with the particular photo they chose for
their damaged car—a baby blue 1967 Ford Mustang with an unfortunate bit of crumpling on the left front fender.

Now, as is common in graphic design work, there's a change in plans, which causes the car's color to be a concern.
So Sally updates her working copy to HEAD, fires up her photo-editing software, and sets about tweaking the

81

Advanced Topics

image so that the car is now cherry red. Meanwhile, Harry, feeling particularly inspired that day, decides that the
image would have greater impact if the car also appears to have suffered greater impact. He, too, updates to HEAD,
and then draws some cracks on the vehicle's windshield. He manages to finish his work before Sally finishes
hers, and after admiring the fruits of his undeniable talent, he commits the modified image. Shortly thereafter,
Sally is finished with the car's new finish and tries to commit her changes. But, as expected, Subversion fails the
commit, informing Sally that her version of the image is now out of date.

Here's where the difficulty sets in. If Harry and Sally were making changes to a text file, Sally would simply update
her working copy, receiving Harry's changes in the process. In the worst possible case, they would have modified
the same region of the file, and Sally would have to work out by hand the proper resolution to the conflict. But
these aren't text files—they are binary images. And while it's a simple matter to describe what one would expect
the results of this content merge to be, there is precious little chance that any software exists that is smart enough
to examine the common baseline image that each of these graphic artists worked against, the changes that Harry
made, and the changes that Sally made, and then spit out an image of a busted-up red Mustang with a cracked
windshield!

Of course, things would have gone more smoothly if Harry and Sally had serialized their modifications to the
image—if, say, Harry had waited to draw his windshield cracks on Sally's now-red car, or if Sally had tweaked
the color of a car whose windshield was already cracked. As is discussed in the section called “The copy-mod-
ify-merge solution”, most of these types of problems go away entirely where perfect communication between
Harry and Sally exists." But as one's version control system is, in fact, one form of communication, it follows
that having that software facilitate the serialization of nonparallelizable editing efforts is no bad thing. This is
where Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is where we
talk about Subversion's locking feature, which is similar to the “reserved checkouts” mechanisms of other ver-
sion control systems.

Subversion's locking feature exists ultimately to minimize wasted time and effort. By allowing a user to program-
matically claim the exclusive right to change a file in the repository, that user can be reasonably confident that
any energy he invests on unmergeable changes won't be wasted—his commit of those changes will succeed. Also,
because Subversion communicates to other users that serialization is in effect for a particular versioned object,
those users can reasonably expect that the object is about to be changed by someone else. They, too, can then
avoid wasting their time and energy on unmergeable changes that won't be committable due to eventual out-
of-dateness.

When referring to Subversion's locking feature, one is actually talking about a fairly diverse collection of behav-
iors, which include the ability to lock a versioned file'* (claiming the exclusive right to modify the file), to unlock
that file (yielding that exclusive right to modify), to see reports about which files are locked and by whom, to
annotate files for which locking before editing is strongly advised, and so on. In this section, we'll cover all of
these facets of the larger locking feature.

The Three Meanings of “Lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a mechanism
for mutual exclusion between users to avoid clashing commits. Unfortunately, there are two other sorts of
“lock” with which Subversion, and therefore this book, sometimes needs to be concerned.

The second is working copy locks, used internally by Subversion to prevent clashes between multiple Sub-
version clients operating on the same working copy. This is the sort of lock indicated by an L in the third

“'Communication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that matter.
2Subversion does not currently allow locks on directories.

82

Advanced Topics

column of svn status output, and removed by the svn cleanup command, as described in the section
called “Sometimes You Just Need to Clean Up”.

Third, there are database locks, used internally by the Berkeley DB backend to prevent clashes between
multiple programs trying to access the database. This is the sort of lock whose unwanted persistence after
an error can cause a repository to be “wedged,” as described in the section called “Berkeley DB Recovery”.

You can generally forget about these other kinds of locks until something goes wrong that requires you to
care about them. In this book, “lock” means the first sort unless the contrary is either clear from context
or explicitly stated.

Creating Locks

In the Subversion repository, a lock is a piece of metadata that grants exclusive access to one user to change a file.
This user is said to be the lock owner. Each lock also has a unique identifier, typically a long string of characters,
known as the lock token. The repository manages locks, ultimately handling their creation, enforcement, and
removal. If any commit transaction attempts to modify or delete a locked file (or delete one of the parent direc-
tories of the file), the repository will demand two pieces of information—that the client performing the commit
be authenticated as the lock owner, and that the lock token has been provided as part of the commit process as
a form of proof that the client knows which lock it is using.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers working on the same
binary image files. Harry has decided to change a JPEG image. To prevent other people from committing changes
to the file while he is modifying it (as well as alerting them that he is about to change it), he locks the file in the
repository using the svn lock command.

$ svn lock banana.jpg -m "Editing file for tomorrow's release."
'banana.jpg' locked by user 'harry'.
$

The preceding example demonstrates a number of new things. First, notice that Harry passed the --message
(-m) option to svn lock. Similar to svn commit, the svn lock command can take comments—via either --
message (-m) or --file (-F)—to describe the reason for locking the file. Unlike svn commit, however, svn
lock will not demand a message by launching your preferred text editor. Lock comments are optional, but still
recommended to aid communication.

Second, the lock attempt succeeded. This means that the file wasn't already locked, and that Harry had the latest
version of the file. If Harry's working copy of the file had been out of date, the repository would have rejected the
request, forcing Harry to svn update and reattempt the locking command. The locking command would also
have failed if the file had already been locked by someone else.

As you can see, the svn lock command prints confirmation of the successful lock. At this point, the fact that the
file is locked becomes apparent in the output of the svn status and svn info reporting subcommands.

$ svn status
K Dbanana.jpg

S svn info banana.jpg

Path: banana.jpg

83

Advanced Topics

Name: banana.jpg

Working Copy Root Path: /home/harry/project

URL: http://svn.example.com/repos/project/banana.jpg

Repository Root: http://svn.example.com/repos/project

Repository UUID: edb2f264-5ef2-0310-a47a-87b0cel7a8ec

Revision: 2198

Node Kind: file

Schedule: normal

Last Changed Author: frank

Last Changed Rev: 1950

Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum: 3b110d3b10638f5d1f4fe0f436a5a2a5

Lock Token: opagquelocktoken:0c0£600b-88£9-0310-9e48-355b44d4a58e
Lock Owner: harry

Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)

Lock Comment (1 line):

Editing file for tomorrow's release.

The fact that the svn info command, which does not contact the repository when run against working copy
paths, can display the lock token reveals an important piece of information about those tokens: they are cached
in the working copy. The presence of the lock token is critical. It gives the working copy authorization to make
use of the lock later on. Also, the svn status command shows a K next to the file (short for locKed), indicating
that the lock token is present.

Regarding Lock Tokens

Alock token isn't an authentication token, so much as an authorization token. The token isn't a protected
secret. In fact, a lock's unique token is discoverable by anyone who runs svn info URL. A lock token
is special only when it lives inside a working copy. It's proof that the lock was created in that particular
working copy, and not somewhere else by some other client. Merely authenticating as the lock owner isn't
enough to prevent accidents.

For example, suppose you lock a file using a computer at your office, but leave work for the day before you
finish your changes to that file. It should not be possible to accidentally commit changes to that same file
from your home computer later that evening simply because you've authenticated as the lock's owner. In
other words, the lock token prevents one piece of Subversion-related software from undermining the work
of another. (In our example, if you really need to change the file from an alternative working copy, you
would need to break the lock and relock the file.)

Now that Harry has locked banana. jpg, Sally is unable to change or delete that file:

S svn delete banana.jpg

D banana. jpg

$ svn commit -m "Delete useless file."
Deleting banana. jpg

svn: E175002: Commit failed (details follow):

svn: E175002: Server sent unexpected return value (423 Locked) in response to

84

Advanced Topics

DELETE request for '/repos/project/!svn/wrk/64bad3a9-96£9-0310-818a-df4224ddc
35d/banana.jpg’
$

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the file. That's because
he authenticates as the lock owner and also because his working copy holds the correct lock token:

$ svn status

M K Dbanana.jpg

$ svn commit -m "Make banana more yellow"
Sending banana. jpg

Transmitting file data .

Committed revision 2201.

S svn status

$

Notice that after the commit is finished, svn status shows that the lock token is no longer present in the working
copy. This is the standard behavior of svn commit—it searches the working copy (or list of targets, if you provide
such a list) for local modifications and sends all the lock tokens it encounters during this walk to the server as
part of the commit transaction. After the commit completes successfully, all of the repository locks that were
mentioned are released—even on files that weren't committed. This is meant to discourage users from being
sloppy about locking or from holding locks for too long. If Harry haphazardly locks 30 files in a directory named
images because he's unsure of which files he needs to change, yet changes only four of those files, when he runs
svn commit images, the process will still release all 30 locks.

This behavior of automatically releasing locks can be overridden with the --no-unlock option to svn commit.
This is best used for those times when you want to commit changes, but still plan to make more changes and thus
need to retain existing locks. You can also make this your default behavior by setting the no-unlock runtime
configuration option (see the section called “Runtime Configuration Area”).

Of course, locking a file doesn't oblige one to commit a change to it. The lock can be released at any time with
a simple svn unlock command:

S svn unlock banana.c

'banana.c' unlocked.

Discovering Locks

When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easiest way is to run

svn status -u:

$ svn status -u

M 23 bar.c

M) 32 raisin.jpg
e 72 foo.h

Status against revision: 105

$

In this example, Sally can see not only that her copy of foo . h is out of date, but also that one of the two modified
files she plans to commit is locked in the repository. The 0 symbol stands for “Other,” meaning that a lock exists

85

Advanced Topics

on the file and was created by somebody else. If she were to attempt a commit, the lock on raisin.jpg would
prevent it. Sally is left wondering who made the lock, when, and why. Once again, svn info has the answers:

$ svn info "/raisin.jpg

Path: raisin.jpg

Name: raisin.jpg

URL: http://svn.example.com/repos/project/raisin.jpg
Repository Root: http://svn.example.com/repos/project
Repository UUID: edb2f264-5ef2-0310-a47a-87b0cel7a8ec

Revision: 105

Node Kind: file

Last Changed Author: sally

Last Changed Rev: 32

Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquelocktoken:fc2bd4dee-98£f9-0310-abf3-653£f£3226e6b
Lock Owner: harry

Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Lock Comment (1 line):

Need to make a quick tweak to this image.

$

Just as you can use svn info to examine objects in the working copy, you can also use it to examine objects in
the repository. If the main argument to svn info is a working copy path, then all of the working copy's cached
information is displayed; any mention of a lock means that the working copy is holding a lock token (if a file is
locked by another user or in another working copy, svn info on a working copy path will show no lock informa-
tion at all). If the main argument to svn info is a URL, the information reflects the latest version of an object in
the repository, and any mention of a lock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16 to “make a quick tweak.” It
being June, she suspects that he probably forgot all about the lock. She might phone Harry to complain and ask
him to release the lock. If he's unavailable, she might try to forcibly break the lock herself or ask an administrator
to do so.

Breaking and Stealing Locks

A repository lock isn't sacred—in Subversion's default configuration state, locks can be released not only by the
person who created them, but by anyone. When somebody other than the original lock creator destroys a lock,
we refer to this as breaking the lock.

From the administrator's chair, it's simple to break locks. The svnlook and svnadmin programs have the
ability to display and remove locks directly from the repository. (For more information about these tools, see
the section called “An Administrator's Toolkit”.)

$ svnadmin lslocks /var/svn/repos

Path: /project2/images/banana.jpg

UUID Token: opaquelocktoken:c32b4d88-e8fb-2310-abb3-153£f£f1236923
Owner: frank

Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)

Expires:

Comment (1 line):

Still improving the yellow color.

86

Advanced Topics

Path: /project/raisin.jpg

UUID Token: opaquelocktoken:fc2b4dee-98£f9-0310-abf3-653£f£3226e6b
Owner: harry

Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Expires:

Comment (1 line):

Need to make a quick tweak to this image.

$ svnadmin rmlocks /var/svn/repos /project/raisin.jpg
Removed lock on '/project/raisin.jpg'.

$

The more interesting option is to allow users to break each other's locks over the network. To do this, Sally simply
needs to pass the --force to the svn unlock command:

$ svn status -u

M 23 bar.c

M 0] 32 raisin.jpg
* 72 foo.h

Status against revision: 105

$ svn unlock raisin.jpg

svn: E195013: 'raisin.jpg' is not locked in this working copy

$ svn info raisin.jpg | grep URL

URL: http://svn.example.com/repos/project/raisin.jpg

$ svn unlock http://svn.example.com/repos/project/raisin.jpg

svn: warning: W160039: Unlock failed on 'raisin.jpg' (403 Forbidden)
$ svn unlock —--force http://svn.example.com/repos/project/raisin.jpg
'raisin.jpg' unlocked.

$

Now, Sally's initial attempt to unlock failed because she ran svn unlock directly on her working copy of the file,
and no lock token was present. To remove the lock directly from the repository, she needs to pass a URL to svn
unlock. Her first attempt to unlock the URL fails, because she can't authenticate as the lock owner (nor does
she have the lock token). But when she passes --force, the authentication and authorization requirements are
ignored, and the remote lock is broken.

Simply breaking a lock may not be enough. In the running example, Sally may not only want to break Harry's
long-forgotten lock, but relock the file for her own use. She can accomplish this by using svn unlock with
--force and then svn lock back-to-back, but there's a small chance that somebody else might lock the file
between the two commands. The simpler thing to do is to steal the lock, which involves breaking and relocking
the file all in one atomic step. To do this, Sally passes the --force option to svn lock:

$ svn lock raisin.jpg

svn: warning: W160035: Path '/project/raisin.jpg' is already locked by user 'h
arry' in filesystem '/var/svn/repos/db'

$ svn lock --force raisin.jpg

'raisin.jpg' locked by user 'sally'.

$

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy still
contains the original lock token, but that lock no longer exists. The lock token is said to be defunct. The lock

87

Advanced Topics

represented by the lock token has either been broken (no longer in the repository) or stolen (replaced with a
different lock). Either way, Harry can see this by asking svn status to contact the repository:

S svn status
K raisin.jpg
$ svn status -u
B 32 raisin.jpg
Status against revision: 105
$ svn update
Updating '.':
B raisin.jpg
Updated to revision 105.
$ svn status

$

If the repository lock was broken, then svn status --show-updates (-u) displays a B (Broken) symbol next
to the file. If a new lock exists in place of the old one, then a T (sTolen) symbol is shown. Finally, svn update
notices any defunct lock tokens and removes them from the working copy.

Locking Policies

Different systems have different notions of how strict a lock should be. Some folks argue that locks must
be strictly enforced at all costs, releasable only by the original creator or administrator. They argue that
if anyone can break a lock, chaos runs rampant and the whole point of locking is defeated. The other side
argues that locks are first and foremost a communication tool. If users are constantly breaking each other's
locks, it represents a cultural failure within the team and the problem falls outside the scope of software

enforcement.

Subversion defaults to the “softer” approach, but still allows administrators to create stricter enforcement
policies through the use of hook scripts. In particular, the pre-1lock and pre-unlock hooks allow ad-
ministrators to decide when lock creation and lock releases are allowed to happen. Depending on whether
a lock already exists, these two hooks can decide whether to allow a certain user to break or steal a lock.
The post-1lock and post-unlock hooks are also available, and can be used to send email after locking
actions. To learn more about repository hooks, see the section called “Implementing Repository Hooks”.

Lock Communication

We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This satisfies
the goal of serializing commit access to a file. But what about the larger problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away, Sally wants
to do the same thing. She doesn't think to run svn status -u, so she has no idea that Harry has already locked
the file. She spends hours editing the file, and when she tries to commit her change, she discovers that either the
file is locked or that she's out of date. Regardless, her changes aren't mergeable with Harry's. One of these two
people has to throw away his or her work, and a lot of time has been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file ought to be locked
before the editing begins. The mechanism is a special property: svn:needs-1ock. If that property is attached
to a file (regardless of its value, which is irrelevant), Subversion will try to use filesystem-level permissions to
make the file read-only—unless, of course, the user has explicitly locked the file. When a lock token is present

88

Advanced Topics

(as a result of using svn lock), the file becomes read/write. When the lock is released, the file becomes read-
only again.

The theory, then, is that if the image file has this property attached, Sally would immediately notice something
is strange when she opens the file for editing: many applications alert users immediately when a read-only file
is opened for editing, and nearly all would prevent her from saving changes to the file. This reminds her to lock
the file before editing, whereby she discovers the preexisting lock:

$ /usr/local/bin/gimp raisin.jpg

gimp: error: file is read-only!

$ 1s -1 raisin.jpg

=E==F==F== 1 sally sally 215589 Jun 8 19:23 raisin.jpg

$ svn lock raisin.jpg

svn: warning: W160035: Path '/project/raisin.jpg' is already locked by user 'h
arry' in filesystem '/var/svn/repos/db'

$ svn info http://svn.example.com/repos/project/raisin.jpg | grep Lock
Lock Token: opaquelocktoken:fc2bd4dee-98£f9-0310-abf3-653££3226e6b

Lock Owner: harry

Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)

Lock Comment (1 line):

Making some tweaks. Locking for the next two hours.

$

Users and administrators alike are encouraged to attach the svn:needs-1ock property to
oj any file that cannot be contextually merged. This is the primary technique for encouraging

good locking habits and preventing wasted effort.

Note that this property is a communication tool that works independently from the locking system. In other
words, any file can be locked, whether or not this property is present. And conversely, the presence of this prop-
erty doesn't make the repository require a lock when committing.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the read-only re-
minder won't always work. Sometimes applications misbehave and “hijack” the read-only file, silently allowing
users to edit and save the file anyway. There's not much that Subversion can do in this situation—at the end of
the day, there's simply no substitution for good interpersonal communication.™

Externals Definitions

Sometimes it is useful to construct a working copy that is made out of a number of different checkouts. For
example, you may want different subdirectories to come from different locations in a repository or perhaps from
different repositories altogether. You could certainly set up such a scenario by hand—using svn checkout to
create the sort of nested working copy structure you are trying to achieve. But if this layout is important for
everyone who uses your repository, every other user will need to perform the same checkout operations that
you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping of a
local directory to the URL—and ideally a particular revision—of a versioned directory. In Subversion, you declare
externals definitions in groups using the svn:externals property. You can create or modify this property

3Except, perhaps, a classic Vulcan mind-meld.

89

Advanced Topics

using svn propset or svn propedit (see the section called “Manipulating Properties”). It can be set on any
versioned directory, and its value describes both the external repository location and the client-side directory to
which that location should be checked out.

The convenience of the svn:externals property is that once it is set on a versioned directory, everyone who
checks out a working copy with that directory also gets the benefit of the externals definition. In other words,
once one person has made the effort to define the nested working copy structure, no one else has to bother—
Subversion will, after checking out the original working copy, automatically also check out the external working
copies.

The relative target subdirectories of externals definitions must not already exist on your or
Q other users' systems—Subversion will create them when it checks out the external working

copy.

You also get in the externals definition design all the regular benefits of Subversion properties. The definitions are
versioned. If you need to change an externals definition, you can do so using the regular property modification
subcommands. When you commit a change to the svn:externals property, Subversion will synchronize the
checked-out items against the changed externals definition when you next run svn update. The same thing
will happen when others update their working copies and receive your changes to the externals definition.

Because the svn:externals property has a multiline value, we strongly recommend that
G} you use svn propedit instead of svn propset.

Subversion releases prior to 1.5 honor an externals definition format that is a multiline table of subdirectories
(relative to the versioned directory on which the property is set), optional revision flags, and fully qualified,
absolute Subversion repository URLs. An example of this might look as follows:

$ svn propget svn:externals calc

third-party/sounds http://svn.example.com/repos/sounds
third-party/skins -r148 http://svn.example.com/skinpro’j
third-party/skins/toolkit -r21 http://svn.example.com/skin-maker

When someone checks out a working copy of the calc directory referred to in the previous example, Subversion
also continues to check out the items found in its externals definition.

$ svn checkout http://svn.example.com/repos/calc

A calc

A calc/Makefile
A calc/integer.c
A calc/button.c

Checked out revision 148.

Fetching external item into calc/third-party/sounds

A calc/third-party/sounds/ding.ogg
A calc/third-party/sounds/dong.ogqg
A calc/third-party/sounds/clang.ogg
A calc/third-party/sounds/bang.ogqg
A calc/third-party/sounds/twang.ogg

90

Advanced Topics

Checked out revision 14.

Fetching external item into calc/third-party/skins

As of Subversion 1.5, though, a new format of the svn:externals property is supported. Externals definitions
are still multiline, but the order and format of the various pieces of information have changed. The new syntax
more closely mimics the order of arguments you might pass to svn checkout: the optional revision flags come
first, then the external Subversion repository URL, and finally the relative local subdirectory. Notice, though,
that this time we didn't say “fully qualified, absolute Subversion repository URLs.” That's because the new format
supports relative URLs and URLs that carry peg revisions. The previous example of an externals definition might,
in Subversion 1.5, look like the following:

$ svn propget svn:externals calc
http://svn.example.com/repos/sounds third-party/sounds

-rl148 http://svn.example.com/skinproj third-party/skins

-r21 http://svn.example.com/skin-maker third-party/skins/toolkit

Or, making use of the peg revision syntax (which we describe in detail in the section called “Peg and Operative
Revisions”), it might appear as:

$ svn propget svn:externals calc
http://svn.example.com/repos/sounds third-party/sounds
http://svn.example.com/skinproj@148 third-party/skins
http://svn.example.com/skin-maker@21 third-party/skins/toolkit

You should seriously consider using explicit revision numbers in all of your externals defini-
0} tions. Doing so means that you get to decide when to pull down a different snapshot of exter-
nal information, and exactly which snapshot to pull. Besides avoiding the surprise of getting
changes to third-party repositories that you might not have any control over, using explicit re-
vision numbers also means that as you backdate your working copy to a previous revision, your
externals definitions will also revert to the way they looked in that previous revision, which
in turn means that the external working copies will be updated to match the way they looked
back when your repository was at that previous revision. For software projects, this could be
the difference between a successful and a failed build of an older snapshot of your complex

codebase.

For most repositories, these three ways of formatting the externals definitions have the same ultimate effect.
They all bring the same benefits. Unfortunately, they all bring the same annoyances, too. Since the definitions
shown use absolute URLSs, moving or copying a directory to which they are attached will not affect what gets
checked out as an external (though the relative local target subdirectory will, of course, move with the renamed
directory). This can be confusing—even frustrating—in certain situations. For example, say you have a top-lev-
el directory named my-project, and you've created an externals definition on one of its subdirectories (my-
project/some-dir) that tracks the latest revision of another of its subdirectories (my-project/exter-

nal-dir).

$ svn checkout http://svn.example.com/projects
A my-project

A my-project/some-dir

91

Advanced Topics

A my-project/external-dir

Fetching external item into 'my-project/some-dir/subdir'

Checked out external at revision 11.

Checked out revision 11.
$ svn propget svn:externals my-project/some-dir

subdir http://svn.example.com/projects/my-project/external-dir

Now you use svn move to rename the my-project directory. At this point, your externals definition will still
refer to a path under the my-project directory, even though that directory no longer exists.

$ svn move -g my-project renamed-project
$ svn commit -m "Rename my-project to renamed-project."
Deleting my-project

Adding renamed-project

Committed revision 12.

$ svn update
Updating '.':

svn: warning: W200000: Error handling externals definition for 'renamed-projec
t/some-dir/subdir':

svn: warning: W170000: URL 'http://svn.example.com/projects/my-project/externa
l-dir' at revision 12 doesn't exist

At revision 12.

svn: E205011: Failure occurred processing one or more externals definitions

$

Also, absolute URLSs can cause problems with repositories that are available via multiple URL schemes. For
example, if your Subversion server is configured to allow everyone to check out the repository over http:// or
https://,but only allow commits to come in via https: //,you have an interesting problem on your hands. If
your externals definitions use the http: // form of the repository URLSs, you won't be able to commit anything
from the working copies created by those externals. On the other hand, if they use the https:// form of the
URLSs, anyone who might be checking out via http:// because his client doesn't support https:// will be
unable to fetch the external items. Be aware, too, that if you need to reparent your working copy (using svn
relocate), externals definitions will not also be reparented.

Subversion 1.5 takes a huge step in relieving these frustrations. As mentioned earlier, the URLSs used in the new
externals definition format can be relative, and Subversion provides syntax magic for specifying multiple flavors
of URL relativity.

./
Relative to the URL of the directory on which the svn:externals property is set

~/
Relative to the root of the repository in which the svn:externals property is versioned

//
Relative to the scheme of the URL of the directory on which the svn:externals property is set

92

Advanced Topics

Relative to the root URL of the server on which the svn:externals property is versioned

~/../REPO-NAME
Relative to a sibling repository beneath the same SVNParentPath location as the repository in which the
svn:externals is defined.

So, looking a fourth time at our previous externals definition example, and making use of the new absolute URL
syntax in various ways, we might now see:

$ svn propget svn:externals calc

~/sounds third-party/sounds

/skinproj@148 third-party/skins
//svn.example.com/skin-maker@21 third-party/skins/toolkit
$

Subversion 1.6 brought two more improvements to externals definitions. First, it added a quoting and escape
mechanism to the syntax so that the path of the external working copy may contain whitespace. This was previ-
ously problematic, of course, because whitespace is used to delimit the fields in an externals definition. Now you
need only wrap such a path specification in double-quote (") characters or escape the problematic characters in
the path with a backslash (\) character. Of course, if you have spaces in the URL portion of the external defini-
tion, you should use the standard URI-encoding mechanism to represent those.

$ svn propget svn:externals paint
http://svn.thirdparty.com/repos/My%20Project "My Project"
http://svn.thirdparty.com/repos/%$22Quotes$20To0%22 \"Quotes\ Too\"
$

Subversion 1.6 also introduced support for external definitions for files. File externals are configured just like
externals for directories and appear as a versioned file in the working copy.

For example, let's say you had the file /t runk/bikeshed/blue.html in your repository, and you wanted this
file, as it appeared in revision 40, to appear in your working copy of /t runk/www/ as green.html.

The externals definition required to achieve this should look familiar by now:

$ svn propget svn:externals www/
~/trunk/bikeshed/blue.html@40 green.html
$ svn update

Updating '.':

Fetching external item into 'www'
E www/green.html

Updated external to revision 40.

Update to revision 103.
$ svn status
X www/green.html

$

As you can see in the previous output, Subversion denotes file externals with the letter £E when they are fetched
into the working copy, and with the letter X when showing the working copy status.

93

Advanced Topics

While directory externals can place the external directory at any depth, and any missing inter-
mediate directories will be created, file externals must be placed into a working copy that is
already checked out.

When examining the file external with svn info, you can see the URL and revision the external is coming from:

$ svn info www/green.html

Path: www/green.html

Name: green.html

Working Copy Root Path: /home/harry/projects/my-project

URL: http://svn.example.com/projects/my-project/trunk/bikeshed/blue.html
Repository Root: http://svn.example.com/projects/my-project
Repository UUID: b2a368dc-7564-11de-bb2b-113435390el7

Revision: 40

Node kind: file

Schedule: normal

Last Changed Author: harry

Last Changed Rev: 40

Last Changed Date: 2009-07-20 20:38:20 +0100 (Mon, 20 Jul 2009)
Text Last Updated: 2009-07-20 23:22:36 +0100 (Mon, 20 Jul 2009)
Checksum: 01a58b04617b92492d99662c3837b33b

$

Because file externals appear in the working copy as versioned files, they can be modified and even committed
if they reference a file at the HEAD revision. The committed changes will then appear in the external as well
as the file referenced by the external. However, in our example, we pinned the external to an older revision, so
attempting to commit the external fails:

$ svn status

M X www/green.html

$ svn commit -m "change the color" www/green.html

Sending www/green.html

svn: E155011: Commit failed (details follow):

svn: E155011: File '/trunk/bikeshed/blue.html' is out of date
$

Keep this in mind when defining file externals. If you need the external to refer to a certain revision of a file you
will not be able to modify the external. If you want to be able to modify the external, you cannot specify a revision
other than the HEAD revision, which is implied if no revision is specified.

Unfortunately, the support which exists for externals definitions in Subversion remains less than ideal. Both
file and directory externals have shortcomings. For either type of external, the local subdirectory part of the
definition cannot contain . . parent directory indicators (suchas . . /.. /skins/myskin). File externals cannot
refer to files from other repositories. A file external's URL must always be in the same repository as the URL
that the file external will be inserted into. Also, file externals cannot be moved or deleted. The svn:externals
property must be modified instead. However, file externals can be copied.

Perhaps most disappointingly, the working copies created via the externals definition support are still discon-
nected from the primary working copy (on whose versioned directories the svn:externals property was ac-
tually set). And Subversion still truly operates only on nondisjoint working copies. So, for example, if you want to

94

Advanced Topics

commit changes that you've made in one or more of those external working copies, you must run svn commit
explicitly on those working copies—committing on the primary working copy will not recurse into any external

ones.

We've already mentioned some of the additional shortcomings of the old svn:externals format and how the
newer Subversion 1.5 format improves upon it. But be careful when making use of the new format that you
don't inadvertently introduce new problems. For example, while the latest clients will continue to recognize and
support the original externals definition format, pre-1.5 clients will not be able to correctly parse the new format.
If you change all your externals definitions to the newer format, you effectively force everyone who uses those
externals to upgrade their Subversion clients to a version that can parse them. Also, be careful to avoid naively
relocating the -r NNN portion of the definition—the older format uses that revision as a peg revision, but the
newer format uses it as an operative revision (with a peg revision of HEAD unless otherwise specified; see the
section called “Peg and Operative Revisions” for a full explanation of the distinction here).

External working copies are still completely self-sufficient working copies. You can operate

Q directly on them as you would any other working copy. This can be a handy feature, allowing
you to examine an external working copy independently of any primary working copy whose
svn:externals property caused its instantiation. Be careful, though, that you don't inad-
vertently modify your external working copy in subtle ways that cause problems. For example,
while an externals definition might specify that the external working copy should be held at
a particular revision number, if you run svn update directly on the external working copy,
Subversion will oblige, and now your external working copy is out of sync with its declaration
in the primary working copy. Using svn switch to directly switch the external working copy
(or some portion thereof) to another URL could cause similar problems if the contents of the
primary working copy are expecting particular contents in the external content.

Besides the svn checkout, svn update, svn switch, and svn export commands which actually manage the
disjoint (or disconnected) subdirectories into which externals are checked out, the svn status command also
recognizes externals definitions. It displays a status code of X for the disjoint external subdirectories, and then
recurses into those subdirectories to display the status of the external items themselves. You can pass the --
ignore-externals option to any of these subcommands to disable externals definition processing.

Changelists

It is commonplace for a developer to find himself working at any given time on multiple different, distinct
changes to a particular bit of source code. This isn't necessarily due to poor planning or some form of digital
masochism. A software engineer often spots bugs in his peripheral vision while working on some nearby chunk
of source code. Or perhaps he's halfway through some large change when he realizes the solution he's working
on is best committed as several smaller logical units. Often, these logical units aren't nicely contained in some
module, safely separated from other changes. The units might overlap, modifying different files in the same
module, or even modifying different lines in the same file.

Developers can employ various work methodologies to keep these logical changes organized. Some use separate
working copies of the same repository to hold each individual change in progress. Others might choose to create
short-lived feature branches in the repository and use a single working copy that is constantly switched to point
to one such branch or another. Still others use diff and patch tools to back up and restore uncommitted changes
to and from patch files associated with each change. Each of these methods has its pros and cons, and to a large
degree, the details of the changes being made heavily influence the methodology used to distinguish them.

95

Advanced Topics

Subversion provides a changelists feature that adds yet another method to the mix. Changelists are basically
arbitrary labels (currently at most one per file) applied to working copy files for the express purpose of associat-
ing multiple files together. Users of many of Google's software offerings are familiar with this concept already.
For example, Gmail [http://mail.google.com/] doesn't provide the traditional folders-based email organization
mechanism. In Gmail, you apply arbitrary labels to emails, and multiple emails can be said to be part of the same
group if they happen to share a particular label. Viewing only a group of similarly labeled emails then becomes a
simple user interface trick. Many other Web 2.0 sites have similar mechanisms—consider the “tags” used by sites
such as YouTube [http://www.youtube.com/] and Flickr [http://www.flickr.com/], “categories” applied to blog
posts, and so on. Folks understand today that organization of data is critical, but that how that data is organized
needs to be a flexible concept. The old files-and-folders paradigm is too rigid for some applications.

Subversion's changelist support allows you to create changelists by applying labels to files you want to be associ-
ated with that changelist, remove those labels, and limit the scope of the files on which its subcommands operate
to only those bearing a particular label. In this section, we'll look in detail at how to do these things.

Creating and Modifying Changelists

You can create, modify, and delete changelists using the svn changelist command. More accurately, you use
this command to set or unset the changelist association of a particular working copy file. A changelist is effectively
created the first time you label a file with that changelist; it is deleted when you remove that label from the last
file that had it. Let's examine a usage scenario that demonstrates these concepts.

Harry is fixing some bugs in the calculator application's mathematics logic. His work leads him to change a
couple of files:

S svn status

M integer.c
M mathops.c
$

While testing his bug fix, Harry notices that his changes bring to light a tangentially related bug in the user
interface logic found in but ton. c. Harry decides that he'll go ahead and fix that bug, too, as a separate commit
from his math fixes. Now, in a small working copy with only a handful of files and few logical changes, Harry can
probably keep his two logical change groupings mentally organized without any problem. But today he's going
to use Subversion's changelists feature as a special favor to the authors of this book.

Harry first creates a changelist and associates with it the two files he's already changed. He does this by using
the svn changelist command to assign the same arbitrary changelist name to those files:

$ svn changelist math-fixes integer.c mathops.c
A [math-fixes] integer.c
A [math-fixes] mathops.c

S svn status

—-—-- Changelist 'math-fixes':

M integer.c
M mathops.c
$

As you can see, the output of svn status reflects this new grouping.

96

http://mail.google.com/
http://mail.google.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.flickr.com/

Advanced Topics

Harry now sets off to fix the secondary UI problem. Since he knows which file he'll be changing, he assigns that
path to a changelist, too. Unfortunately, Harry carelessly assigns this third file to the same changelist as the
previous two files:

$ svn changelist math-fixes button.c
A [math-fixes] button.c

$ svn status

——- Changelist 'math-fixes':

button.c
M integer.c
M mathops.c

$

Fortunately, Harry catches his mistake. At this point, he has two options. He can remove the changelist associ-
ation from button. c, and then assign a different changelist name:

svn changelist --remove button.c
[math-fixes] button.c
svn changelist ui-fix button.c

[ui-fix] button.c

v P o O n

Or, he can skip the removal and just assign a new changelist name. In this case, Subversion will first warn Harry
that button. c is being removed from the first changelist:

$ svn changelist ui-fix button.c
D [math-fixes] button.c
A [ui-fix] button.c

S svn status

—--- Changelist 'ui-fix':

button.c

——- Changelist 'math-fixes':

M integer.c
M mathops.c
$

Harry now has two distinct changelists present in his working copy, and svn status will group its output ac-
cording to these changelist determinations. Notice that even though Harry hasn't yet modified button. c, it still
shows up in the output of svn status as interesting because it has a changelist assignment. Changelists can be
added to and removed from files at any time, regardless of whether they contain local modifications.

Harry now fixes the user interface problem in button.c.

$ svn status

—-- Changelist 'ui-fix':
M button.c

97

Advanced Topics

——-- Changelist 'math-fixes':

M integer.c
M mathops.c
$

Changelists As Operation Filters

The visual grouping that Harry sees in the output of svn status as shown in our previous section is nice, but
not entirely useful. The status command is but one of many operations that he might wish to perform on his
working copy. Fortunately, many of Subversion's other operations understand how to operate on changelists via
the use of the --changelist option.

When provided with a -—-changelist option, Subversion commands will limit the scope of their operation to
only those files to which a particular changelist name is assigned. If Harry now wants to see the actual changes
he's made to the files in his math-fixes changelist, he could explicitly list only the files that make up that
changelist on the svn diff command line.

$ svn diff integer.c mathops.c

Index: integer.c

--- integer.c (revision 1157)

+++ integer.c (working copy)

Index: mathops.c

--- mathops.c (revision 1157)

+++ mathops.c (working copy)

That works okay for a few files, but what if Harry's change touched 20 or 30 files? That would be an annoyingly
long list of explicitly named files. Now that he's using changelists, though, Harry can avoid explicitly listing the
set of files in his changelist from now on, and instead provide just the changelist name:

$ svn diff --changelist math-fixes

Index: integer.c

--- integer.c (revision 1157)

+++ integer.c (working copy)

Index: mathops.c

--- mathops.c (revision 1157)

+++ mathops.c (working copy)

And when it's time to commit, Harry can again use the --changelist option to limit the scope of the commit
to files in a certain changelist. He might commit his user interface fix by doing the following;:

98

Advanced Topics

$ svn commit -m "Fix a UI bug found while working on math logic." \
--changelist ui-fix

Sending button.c

Transmitting file data .

Committed revision 1158.

$

In fact, the svn commit command provides a second changelists-related option: --keep-changelists. Nor-
mally, changelist assignments are removed from files after they are committed. But if --keep-changelists
is provided, Subversion will leave the changelist assignment on the committed (and now unmodified) files. In
any case, committing files assigned to one changelist leaves other changelists undisturbed.

S svn status

—-—-- Changelist 'math-fixes':

M integer.c
M mathops.c
$

The --changelist option acts only as a filter for Subversion command targets, and will not
<> add targets to an operation. For example, on a commit operation specified as svn commit /
path/to/dir, the target is the directory /path/to/dir and its children (to infinite depth).
If you then add a changelist specifier to that command, only those files in and under /path/
to/dir that are assigned that changelist name will be considered as targets of the commit—
the commit will not include files located elsewhere (such as in /path/to/another-dir),
regardless of their changelist assignment, even if they are part of the same working copy as

the operation's target(s).

Even the svn changelist command accepts the --changelist option. This allows you to quickly and easily
rename or remove a changelist:

svn changelist math-bugs --changelist math-fixes --depth infinity .
[math-fixes] integer.c

[math-bugs] integer.c

[math-fixes] mathops.c

[math-bugs] mathops.c

svn changelist --remove --changelist math-bugs --depth infinity .
[math-bugs] integer.c

[math-bugs] mathops.c

» U g w» P o P g »n

Finally, you can specify multiple instances of the --changelist option on a single command line. Doing so
limits the operation you are performing to files found in any of the specified changesets.

Changelist Limitations

Subversion's changelist feature is a handy tool for grouping working copy files, but it does have a few limita-
tions. Changelists are artifacts of a particular working copy, which means that changelist assignments cannot
be propagated to the repository or otherwise shared with other users. Changelists can be assigned only to files—
Subversion doesn't currently support the use of changelists with directories. Finally, you can have at most one

99

Advanced Topics

changelist assignment on a given working copy file. Here is where the blog post category and photo service tag
analogies break down—if you find yourself needing to assign a file to multiple changelists, you're out of luck.

Network Model

At some point, you're going to need to understand how your Subversion client communicates with its server.
Subversion's networking layer is abstracted, meaning that Subversion clients exhibit the same general behaviors
no matter what sort of server they are operating against. Whether speaking the HTTP protocol (http://) with
the Apache HTTP Server or speaking the custom Subversion protocol (svn: //) with svnserve, the basic net-
work model is the same. In this section, we'll explain the basics of that network model, including how Subversion
manages authentication and authorization matters.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information from a
remote repository, however, it makes a network request, and the server responds with an appropriate answer.
The details of the network protocol are hidden from the user—the client attempts to access a URL, and depending
on the URL scheme, a particular protocol is used to contact the server (see the section called “Addressing the
Repository”).

0 Run svn --version to see which URL schemes and protocols the client knows how to use.

When the server process receives a client request, it often demands that the client identify itself. It issues an
authentication challenge to the client, and the client responds by providing credentials back to the server. Once
authentication is complete, the server responds with the original information that the client asked for. Notice
that this system is different from systems such as CVS, where the client preemptively offers credentials (“logs
in”) to the server before ever making a request. In Subversion, the server “pulls” credentials by challenging the
client at the appropriate moment, rather than the client “pushing” them. This makes certain operations more
elegant. For example, if a server is configured to allow anyone in the world to read a repository, the server will
never issue an authentication challenge when a client attempts to svn checkout.

If the particular network requests issued by the client result in a new revision being created in the repository
(e.g., svn commit), Subversion uses the authenticated username associated with those requests as the author
of the revision. That is, the authenticated user's name is stored as the value of the svn:author property on
the new revision (see the section called “Subversion Properties” in Chapter 9, Subversion Complete Reference).
If the client was not authenticated (i.e., if the server never issued an authentication challenge), the revision's
svn:author property is empty.

Client Credentials

Many Subversion servers are configured to require authentication. Sometimes anonymous read operations are
allowed, while write operations must be authenticated. In other cases, reads and writes alike require authenti-
cation. Subversion's different server options understand different authentication protocols, but from the user's
point of view, authentication typically boils down to usernames and passwords. Subversion clients offer sever-
al different ways to retrieve and store a user's authentication credentials, from interactive prompting for user-
names and passwords to encrypted and non-encrypted on-disk data caches.

100

Advanced Topics

The security-conscious reader will suspect immediately that there is reason for concern here. “Caching pass-
words on disk? That's terrible! You should never do that!” Don't worry—it's not as bad as it sounds. The follow-
ing sections discuss the various types of credential caches that Subversion uses, when it uses them, and how to
disable that functionality in whole or in part.

Caching credentials

Subversion offers a remedy for the annoyance caused when users are forced to type their usernames and pass-
words over and over again. By default, whenever the command-line client successfully responds to a server's
authentication challenge, credentials are cached on disk and keyed on a combination of the server's hostname,
port, and authentication realm. This cache will then be automatically consulted in the future, avoiding the need
for the user to re-type his or her authentication credentials. If seemingly suitable credentials are not present
in the cache, or if the cached credentials ultimately fail to authenticate, the client will, by default, fall back to
prompting the user for the necessary information.

The Subversion developers recognize that on-disk caches of authentication credentials can be a security risk. To
offset this, Subversion works with available mechanisms provided by the operating system and environment to
try to minimize the risk of leaking this information.

« On Windows, the Subversion client stores passwords in the $APPDATA%/Subversion/auth/ directory. On
Windows 2000 and later, the standard Windows cryptography services are used to encrypt the password on
disk. Because the encryption key is managed by Windows and is tied to the user's own login credentials, only
the user can decrypt the cached password. (Note that if the user's Windows account password is reset by
an administrator, all of the cached passwords become undecipherable. The Subversion client will behave as
though they don't exist, prompting for passwords when required.)

+ Similarly, on Mac OS X, the Subversion client stores all repository passwords in the login keyring (managed by
the Keychain service), which is protected by the user's account password. User preference settings can impose
additional policies, such as requiring that the user's account password be entered each time the Subversion
password is used.

« For other Unix-like operating systems, no single standard “keychain” service exists. However, the Subversion
client knows how to store passwords securely using the “GNOME Keyring” and “KDE Wallet” services. Also,
before storing unencrypted passwords in the ~/.subversion/auth/ caching area, the Subversion client
will ask the user for permission to do so. Note that the auth/ caching area is still permission-protected so that
only the user (owner) can read data from it, not the world at large. The operating system's own file permissions
protect the passwords from other non-administrative users on the same system, provided they have no direct
physical access to the storage media of the home directory, or backups thereof.

Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So for those folks willing
to sacrifice convenience for the ultimate in security, Subversion provides various ways of disabling its credentials
caching system altogether.

Disabling password caching

When you perform a Subversion operation that requires you to authenticate, by default Subversion tries to cache
your authentication credentials on disk in encrypted form. On some systems, Subversion may be unable to en-
crypt your authentication data. In those situations, Subversion will ask whether you want to cache your creden-
tials to disk in plaintext:

101

Advanced Topics

$ svn checkout https://host.example.com:443/svn/private-repo

ATTENTION! Your password for authentication realm:
<https://host.example.com:443> Subversion Repository

can only be stored to disk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if

possible. See the documentation for details.

You can avoid future appearances of this warning by setting the value
of the 'store-plaintext-passwords' option to either 'yes' or 'no' in

'/tmp/servers'.

Store password unencrypted (yes/no)?

If you want the convenience of not having to continually reenter your password for future operations, you can
answer yes to this prompt. If you're concerned about caching your Subversion passwords in plaintext and do not
want to be asked about it again and again, you can disable caching of plaintext passwords either permanently,
or on a server-per-server basis.

When considering how to use Subversion's password caching system, you'll want to consult
any governing policies that are in place for your client computer—many companies have strict
rules about the ways that their employees' authentication credentials should be stored.

To permanently disable caching of passwords in plaintext, add the line store-plaintext-passwords = no
tothe [global] section in the servers configuration file on the local machine. To disable plaintext password
caching for a particular server, use the same setting in the appropriate group section in the servers configura-
tion file. (See the section called “Configuration Options” in Chapter 7, Customizing Your Subversion Experience
for details.)

To disable password caching entirely for any single Subversion command-line operation, pass the --no-auth-
cache option to that command line. To permanently disable caching entirely, add the line store-passwords
= no to your local machine's Subversion configuration file.

Removing cached credentials

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to navigate
into the auth/ area and manually delete the appropriate cache file. Credentials are cached in individual files;
if you look inside each file, you will see keys and values. The svn:realmstring key describes the particular
server realm that the file is associated with:

$ 1ls ~/.subversion/auth/svn.simple/
5671adf2865e267db74£09ba6£872c28
3893ed123b39500bcaB8alb382839198e
5¢3c22968347b390£349££340196ed39

$ cat ~/.subversion/auth/svn.simple/5671adf2865e267db74f09ba6£872c28

102

Advanced Topics

username

vV 3

joe

K 8

password

Vv 4

blah

K 15
svn:realmstring
VvV 45
<https://svn.domain.com:443> Joe's repository
END

Once you have located the proper cache file, just delete it.

Command-line authentication

All Subversion command-line operations accept the --username and --password options, which allow you
to specify your username and password, respectively, so that Subversion isn't forced to prompt you for that in-
formation. This is especially handy if you need to invoke Subversion from a script and cannot rely on Subver-
sion being able to locate valid cached credentials for you. These options are also helpful when Subversion has
already cached authentication credentials for you, but you know they aren't the ones you want it to use. Perhaps
several system users share a login to the system, but each have distinct Subversion identities. You can omit the
--password option from this pair if you wish Subversion to use only the provided username, but still prompt
you for that username's password.

Authentication wrap-up

One last word about svn's authentication behavior, specifically regarding the --username and --password
options. Many client subcommands accept these options, but it is important to understand that using these
options does not automatically send credentials to the server. As discussed earlier, the server “pulls” credentials
from the client when it deems necessary; the client cannot “push” them at will. If a username and/or password
are passed as options, they will be presented to the server only if the server requests them. These options are
typically used to authenticate as a different user than Subversion would have chosen by default (such as your
system login name) or when trying to avoid interactive prompting (such as when calling svn from a script).

A common mistake is to misconfigure a server so that it never issues an authentication chal-
0/ lenge. When users pass --username and --password options to the client, they're surprised

to see that they're never used; that is, new revisions still appear to have been committed anony-
mously!

Here is a final summary that describes how a Subversion client behaves when it receives an authentication chal-
lenge.

1. First, the client checks whether the user specified any credentials as command-line options (--username
and/or --password). If so, the client will try to use those credentials to authenticate against the server.

2. If no command-line credentials were provided, or the provided ones were invalid, the client looks up the
server's hostname, port, and realm in the runtime configuration's auth/ area, to see whether appropriate
credentials are cached there. If so, it attempts to use those credentials to authenticate.

103

Advanced Topics

3. Finally, if the previous mechanisms failed to successfully authenticate the user against the server, the client
resorts to interactively prompting the user for valid credentials (unless instructed not to do so via the -—-non-
interactive option or its client-specific equivalents).

If the client successfully authenticates by any of these methods, it will attempt to cache the credentials on disk
(unless the user has disabled this behavior, as mentioned earlier).

Summary

After reading this chapter, you should have a firm grasp on some of Subversion's features that, while perhaps
not used every time you interact with your version control system, are certainly handy to know about. But don't
stop here! Read on to the following chapter, where you'll learn about branches, tags, and merging. Then you'll
have nearly full mastery of the Subversion client. Though our lawyers won't allow us to promise you anything,
this additional knowledge could make you measurably more cool.'*

4No purchase necessary. Certains terms and conditions apply. No guarantee of coolness—implicit or otherwise—exists. Mileage may vary.

104

Chapter 4. Branching and Merging

“FH %A (It is upon the Trunk that a gentleman works.)”
—Confucius

Branching and merging are fundamental aspects of version control, simple enough to explain conceptually but
offering just enough complexity and nuance to merit their own chapter in this book. Herein, we'll introduce
you to the general ideas behind these operations as well as Subversion's somewhat unique approach to them. If
you've not familiarized yourself with Subversion's basic concepts (found in Chapter 1, Fundamental Concepts),
we recommmend that you do so before reading this chapter.

What's a Branch?

Suppose it's your job to maintain a document for a division in your company—a handbook of some sort. One
day a different division asks you for the same handbook, but with a few parts “tweaked” for them, since they do
things slightly differently.

What do you do in this situation? You do the obvious: make a second copy of your document and begin main-
taining the two copies separately. As each department asks you to make small changes, you incorporate them
into one copy or the other.

You often want to make the same change to both copies. For example, if you discover a typo in the first copy,
it's very likely that the same typo exists in the second copy. The two documents are almost the same, after all;
they differ only in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently of another line,
yet still shares a common history if you look far enough back in time. A branch always begins life as a copy of
something, and moves on from there, generating its own history (see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development

3rd branch

15t branch

L

Oviginal line of development

¥

2nd branch

time (:_:}

Subversion has commands to help you maintain parallel branches of your files and directories. It allows you to
create branches by copying your data, and remembers that the copies are related to one another. It also helps
you duplicate changes from one branch to another. Finally, it can make portions of your working copy reflect
different branches so that you can “mix and match” different lines of development in your daily work.

105

Branching and Merging

Using Branches

At this point, you should understand how each commit creates a new state of the filesystem tree (called a “revi-
sion”) in the repository. If you don't, go back and read about revisions in the section called “Revisions”.

Let's revisit the example from Chapter 1, Fundamental Concepts. Remember that you and your collaborator,
Sally, are sharing a repository that contains two projects, paint and calc. Notice that in Figure 4.2, “Starting
repository layout”, however, each project directory now contains subdirectories named trunk and branches.
The reason for this will soon become clear.

Figure 4.2. Starting repository layout

(]

= alc —
—
P —
>
*=| trunk -
e
e
*| branches
= paint I —
—
P N
[
= trunk >
=
P T —

* branches

As before, assume that Sally and you both have working copies of the “calc” project. Specifically, you each have
a working copy of /calc/trunk. All the files for the project are in this subdirectory rather than in /calc itself,
because your team has decided that /calc/trunkis where the “main line” of development is going to take place.

Let's say that you've been given the task of implementing a large software feature. It will take a long time to write,
and will affect all the files in the project. The immediate problem is that you don't want to interfere with Sally,
who is in the process of fixing small bugs here and there. She's depending on the fact that the latest version of the
project (in /calc/trunk) is always usable. If you start committing your changes bit by bit, you'll surely break
things for Sally (and other team members as well).

One strategy is to crawl into a hole: you can stop sharing information for a week or two, gutting and reorganizing
all the files in your private working copy but not committing or updating until you're completely finished with
your task. There are a number of problems with this, though. First, it's not very safe. Should something bad
happen to your working copy or computer, you risk losing all your changes. Second, it's not very flexible. Unless
you manually replicate your changes across different working copies or computers, you're stuck trying to make
your changes in a single working copy. Similarly, it's difficult to share your work-in-progress with anyone else.

106

Branching and Merging

A common software development “best practice” is to allow your peers to review your work as you go. If nobody
sees your intermediate commits, you lose potential feedback and may end up going down the wrong path for
weeks before another person on your team notices. Finally, when you're finished with all your changes, you might
find it very difficult to merge your completed work with the rest of the company's main body of code. Sally (or
others) may have made many other changes in the repository that are difficult to incorporate into your working
copy when you eventually run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows you to
save your not-yet-completed work frequently without interfering with others' changes and while still selectively
sharing information with your collaborators. You'll see exactly how this works as we continue.

Creating a Branch

Creating a branch is very simple—you make a copy of your project tree in the repository using the svn copy
command. Since your project's source code is rooted in the /calc/trunk directory, it's that directory that you'll
copy. Where should the new copy live? Wherever you wish. The repository location in which branches are stashed
is left by Subversion as a matter of project policy. Finally, your branch will need a name to distinguish it from
other branches. Once again, the name you choose is unimportant to Subversion—you can use whatever name
works best for you and your team.

Let's assume that your team (like most) has a policy of creating branches in the branches directory that is a
sibling of the project's trunk (the /calc/branches directory in our scenario). Lacking inspiration, you settle
on my-calc-branch as the name you wish to give your branch. This means that you'll create a new directory,
/calc/branches/my-calc-branch, which begins its life as a copy of /calc/trunk.

You may already have seen svn copy used to copy one file to another within a working copy. But it can also
be used to do a remote copy—a copy that immediately results in a newly committed repository revision and for
which no working copy is required at all. Just copy one URL to another:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/my-calc-branch \

-m "Creating a private branch of /calc/trunk."

Committed revision 341.

$

This command causes a near-instantaneous commit in the repository, creating a new directory in revision 341.
The new directory is a copy of /calc/trunk. This is shown in Figure 4.3, “Repository with new copy”.! While
it's also possible to create a branch by using svn copy to duplicate a directory within the working copy, this
technique isn't recommended. It can be quite slow, in fact! Copying a directory on the client side is a linear-time
operation, in that it actually has to duplicate every file and subdirectory within that working copy directory on
the local disk. Copying a directory on the server, however, is a constant-time operation, and it's the way most
people create branches.

'Subversion does not support copying between different repositories. When using URLs with svn copy or svn move, you can only copy items
within the same repository.

107

Branching and Merging

Figure 4.3. Repository with new copy

y

—
L S
[B
= trunk -
[B
A S o
*| branches B

branch
S
.-.b.i :
—F‘ paint | .
—
o N _h
= trunk -
mY
— L
* branches

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about
the repository growing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new
directory entry that points to an existing tree. If you're an experienced Unix user, you'll recognize this as the
same concept behind a hard link. As further changes are made to files and directories beneath the copied
directory, Subversion continues to employ this hard link concept where it can. It duplicates data only when
it is necessary to disambiguate different versions of objects.

This is why you'll often hear Subversion users talk about “cheap copies.” It doesn't matter how large the
directory is—it takes a very tiny, constant amount of time and space to make a copy of it. In fact, this feature
is the basis of how commits work in Subversion: each revision is a “cheap copy” of the previous revision,
with a few items lazily changed within. (To read more about this, visit Subversion's web site and read about
the “bubble up” method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees
copies of trees. The main point here is that copies are cheap, both in time and in space. If you create a
branch entirely within the repository (by running svn copy URL1 URL2), it's a quick, constant-time
operation. Make branches as often as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

108

Branching and Merging

$ svn checkout http://svn.example.com/repos/calc/branches/my-calc-branch
A my-calc-branch/Makefile

A my-calc-branch/integer.c

A my-calc-branch/button.c

Checked out revision 341.

$

There's nothing special about this working copy; it simply mirrors a different directory in the repository. When
you commit changes, however, Sally won't see them when she updates, because her working copy is of /calc/
trunk. (Be sure to read the section called “Traversing Branches” later in this chapter: the svn switch command
is an alternative way of creating a working copy of a branch.)

Let's pretend that a week goes by, and the following commits happen:

» You make a change to /calc/branches/my-calc-branch/button.c, which creates revision 342.
» You make a change to /calc/branches/my-calc-branch/integer.c, which creates revision 343.
« Sally makes a change to /calc/trunk/integer.c, which creates revision 344.

Now two independent lines of development (shown in Figure 4.4, “The branching of one file's history”) are
happening on integer.c.

Figure 4.4. The branching of one file's history

| fopied changed
: 5 » my-calc-branch
integer.c r343
| (’.ri-'ﬂ:'IPﬂ' | Ie.'ur.l::*g-e-:.'l If.rrﬂr:lg,lf‘rj'l
: : — trunk
rad 303 r341 r3g4

I'J'nmé)

Things get interesting when you look at the history of changes made to your copy of integer.c:

S pwd

/home/user/my-calc-branch

$ svn log -v integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

M /calc/branches/my-calc-branch/integer.c

* integer.c: frozzled the wazjub.

Branching and Merging

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:
A /calc/branches/my-calc-branch (from /calc/trunk:340)

Creating a private branch of /calc/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:
M /calc/trunk/integer.c

* integer.c: changed a docstring.

r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:
A /calc/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion is tracing the history of your branch's integer. c all the way back through time, even
traversing the point where it was copied. It shows the creation of the branch as an event in the history, because
integer.c wasimplicitly copied when all of /calc/trunk/ was copied. Now look at what happens when Sally
runs the same command on her copy of the file:

S pwd
/home/sally/calc

$ svn log -v integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:
M /calc/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:
M /calc/trunk/integer.c

* integer.c: changed a docstring.

r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:
A /calc/trunk/integer.c

* integer.c: adding this file to the project.

110

Branching and Merging

Sally sees her own revision 344 change, but not the change you made in revision 343. As far as Subversion is
concerned, these two commits affected different files in different repository locations. However, Subversion does
show that the two files share a common history. Before the branch copy was made in revision 341, the files used
to be the same file. That's why you and Sally both see the changes made in revisions 303 and 98.

The Key Concepts Behind Branching

You should remember two important lessons from this section. First, Subversion has no internal concept of a
branch—it knows only how to make copies. When you copy a directory, the resultant directory is only a “branch”
because you attach that meaning to it. You may think of the directory differently, or treat it differently, but to
Subversion it's just an ordinary directory that happens to carry some extra historical information.

Second, because of this copy mechanism, Subversion's branches exist as normal filesystem directories in the
repository. This is different from other version control systems, where branches are typically defined by adding
extra-dimensional “labels” to collections of files. The location of your branch directory doesn't matter to Sub-
version. Most teams follow a convention of putting all branches into a /branches directory, but you're free to
invent any policy you wish.

Basic Merging

Now you and Sally are working on parallel branches of the project: you're working on a private branch, and Sally
is working on the trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have working copies of the
trunk. Whenever someone needs to make a long-running change that is likely to disrupt the trunk, a standard
procedure is to create a private branch and commit changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very easy to
drift too far apart. Remember that one of the problems with the “crawl in a hole” strategy is that by the time
you're finished with your branch, it may be near-impossible to merge your changes back into the trunk without
a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which changes are
worth sharing; Subversion gives you the ability to selectively “copy” changes between branches. And when you're
completely finished with your branch, your entire set of branch changes can be copied back into the trunk. In
Subversion terminology, the general act of replicating changes from one branch to another is called merging,
and it is performed using various invocations of the svn merge subcommand.

In the examples that follow, we're assuming that both your Subversion client and server are running Subversion
1.7 (or later). If either client or server is older than version 1.5, things are more complicated: the system won't
track changes automatically, forcing you to use painful manual methods to achieve similar results. That is, you'll
always need to use the detailed merge syntax to specify specific ranges of revisions to replicate (see the section
called “Merge Syntax: Full Disclosure” later in this chapter), and take special care to keep track of what's already
been merged and what hasn't. For this reason, we strongly recommend that you make sure your client and server
are at least at version 1.5.

Merge Tracking

Subversion 1.5 introduced the merge tracking feature to Subversion. Prior to this feature keeping track
of merges required cumbersome manual procedures or the use of external tools. Subsequent releases of

111

Branching and Merging

Subversion introduced many enhancements and bug fixes to merge tracking, which is why we recommend
using the most recent versions on both your server and client. Keep in mind that even if your server is
running 1.5 or 1.6, you can still use a 1.7 client. This is particularly important as regards merge tracking,
because the overwhelming majority of fixes to it are on the client side.

Changesets

Before we proceed further, we should warn you that there's a lot of discussion of “changes” in the pages ahead. A
lot of people experienced with version control systems use the terms “change” and “changeset” interchangeably,
and we should clarify what Subversion understands as a changeset.

Everyone seems to have a slightly different definition of changeset, or at least a different expectation of what it
means for a version control system to have one. For our purposes, let's say that a changeset is just a collection
of changes with a unique name. The changes might include textual edits to file contents, modifications to tree
structure, or tweaks to metadata. In more common speak, a changeset is just a patch with a name you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the repository looked
after the Nth commit. It's also the name of an implicit changeset: if you compare tree N with tree N-1, you can
derive the exact patch that was committed. For this reason, it's easy to think of revision N as not just a tree,
but a changeset as well. If you use an issue tracker to manage bugs, you can use the revision numbers to refer
to particular patches that fix bugs—for example, “this issue was fixed by r9238.” Somebody can then run svn
log -r 9238 to read about the exact changeset that fixed the bug, and run svn diff -c 9238 to see the
patch itself. And (as you'll see shortly) Subversion's svn merge command is able to use revision numbers. You
can merge specific changesets from one branch to another by naming them in the merge arguments: passing -
c 9238 to svn merge would merge changeset r9238 into your working copy.

Keeping a Branch in Sync

Continuing with our running example, let's suppose that a week has passed since you started working on your
private branch. Your new feature isn't finished yet, but at the same time you know that other people on your
team continue to make important changes in the project's /trunk. It's in your best interest to replicate those
changes to your own branch, just to make sure they mesh well with your changes. This is done by performing a
sync merge—a merge operation designed to bring your branch up to date with any changes made to its ancestral
parent branch since your branch was created.

Frequently keeping your branch in sync with the main development line helps prevent “sur-
oj prise” conflicts when the time comes for you to fold your changes back into the trunk.

Subversion is aware of the history of your branch and knows when it split away from the trunk. To perform a sync
merge, first make sure your working copy of the branch is “clean”—that it has no local modifications reported
by svn status. Then simply run:

S pwd

/home/user/my—-calc-branch

$ svn merge "/calc/trunk
—-—-- Merging r345 through r356 into '.':
U button.c

112

Branching and Merging

U integer.c
—--- Recording mergeinfo for merge of r345 through r356 into '.':
U

$

This basic syntax—svn merge URL—tells Subversion to merge all changes which have not been previously
merged from the URL to the current working directory (which is typically the root of your working copy). Notice
that we're using the caret (*) syntax to avoid having to type out the entire / t runk URL. Also note the “Recording
mergeinfo for merge...” notification. This tells you that the merge is updating the svn:mergeinfo property.
We'll discuss both this property and these notifications later in this chapter, in the section called “Mergeinfo
and Previews”.

In this book and elsewhere (Subversion mailing lists, articles on merge tracking, etc.) you will
_} frequently come across the term mergeinfo. This is simply shorthand for the svn :mergeinfo

property.

Keeping a Branch in Sync Without Merge Tracking

You may not always be able to use Subversion's merge tracking feature, perhaps because your server is
running Subversion 1.4 or earlier. In such a scenario, you can of course still perform merges, but Subversion
will need you to manually do many of the historical calculations that it automatically does on your behalf
when the merge tracking feature is available.

To replicate the most recent trunk changes you need to perform sync merges the “old-fashioned” way—by
specifying ranges of revisions you wish to merge.

Let's say you branched /trunk to /branches/foo-feature in revision 400:

$ svn log -v -r 400 ~/branches/foo-feature

r400 | carol | 2011-11-09 10:51:27 -0500 (Wed, 09 Nov 2011) | 1 line
Changed paths:
A /branch/b2 (from /trunk:399)

Create branch for the foo feature

When you are ready to syncronize your branch with the ongoing changes from trunk, you specify the start-
ing revision as the revision of /t runk which the branch was copied from and the ending revision as HEAD:

$ svn merge ~/trunk -r399:HEAD
—-——- Merging r400 through r556 into '.':

A include/foo.h
U src/main.c
A src/foo.c

After any conflicts have been resolved, you can commit the merged changed to your branch. Now, to avoid

accidentally trying to merge these same changes into your branch again in the future, you'll need to record

2This was introduced in svn 1.6.

113

Branching and Merging

the fact that you've already merged them. But where should that record be kept? One of the simplest places
to record this information is in the log message for the commit of the merge:

S svn ci -m "Sync the foo-feature branch with ”~/trunk through r556."

Sending include/foo.h

Transmitting file data .

Committed revision 557.

The next time you sync /branches/foo-branch with /trunk you repeat this process, except that the
starting revision is the youngest revision that's already been merged in from the trunk. If you've been
keeping good records of your merges in the commit log messages, you should be able to determine what
that youngest revision was by reading the revision logs associated with your branch. Once you know your
starting revision, you can perform another sync merge:

$ svn merge ~/trunk -r556:HEAD

After running the prior example, your branch working copy now contains new local modifications, and these
edits are duplications of all of the changes that have happened on the trunk since you first created your branch:

S svn status

M .
M button.c
M integer.c

$

At this point, the wise thing to do is look at the changes carefully with svn diff, and then build and test your
branch. Notice that the current working directory (“.”) has also been modified; svn diff will show that its
svn:mergeinfo property has been either created or modified. This is important merge-related metadata that
you should not touch, since it is needed by future svn merge commands. (We'll learn more about this metadata

later in the chapter.)

After performing the merge, you might also need to resolve some conflicts—just as you do with svn update—or
possibly make some small edits to get things working properly. (Remember, just because there are no syntactic
conflicts doesn't mean there aren't any semantic conflicts!) If you encounter serious problems, you can always
abort the local changes by running svn revert . -R (which will undo all local modifications) and starting a
long “what's going on?” discussion with your collaborators. If things look good, however, you can submit these
changes into the repository:

$ svn commit -m "Merged latest trunk changes to my-calc-branch."

Sending
Sending button.c
Sending integer.c

Transmitting file data ..
Committed revision 357.

$

114

Branching and Merging

At this point, your private branch is now “in sync” with the trunk, so you can rest easier knowing that as you
continue to work in isolation, you're not drifting too far away from what everyone else is doing.

Why Not Use Patches Instead?

A question may be on your mind, especially if you're a Unix user: why bother to use svn merge at all?
Why not simply use svn patch or the operating system's patch command to accomplish the same job?
For example:

$ cd my-calc-branch

$ svn diff -r 341:HEAD "/calc/trunk > my-patch-file
$ svn patch my-patch-file

U integer.c

$

In this particular example, there really isn't much difference. But svn merge has special abilities that
surpass the patch program. The file format used by patch is quite limited; it's able to tweak file contents
only. There's no way to represent changes to trees, such as the addition, removal, or renaming of files and
directories. Nor can the patch program notice changes to properties. If Sally's change had, say, added a new
directory, the output of svn diff wouldn't have mentioned it at all. svn diff outputs only the limited patch
format, so there are some ideas it simply can't express. Even Subversion's own svn patch subcommand,
while more flexible than patch program, still has similar limitations.

The svn merge command, however, can express changes in tree structure and properties by directly ap-
plying them to your working copy. Even more important, this command records the changes that have
been duplicated to your branch so that Subversion is aware of exactly which changes exist in each location
(see the section called “Mergeinfo and Previews”). This is a critical feature that makes branch management
usable; without it, users would have to manually keep notes on which sets of changes have or haven't been
merged yet.

Suppose that another week has passed. You've committed more changes to your branch, and your comrades
have continued to improve the trunk as well. Once again, you want to replicate the latest trunk changes to your
branch and bring yourself in sync. Just run the same merge command again!

$ svn merge ~/calc/trunk

svn: E195020: Cannot merge into mixed-revision working copy [357:378]; try up\
dating first

$

Well that was unexpected! After making changes to your branch over the past week you now find yourself with a
working copy that contains a mixture of revisions (see the section called “Mixed-revision working copies”). With
the release of Subversion 1.7 the svn merge subcommand disables merges into mixed-revision working copies
by default. Without going into too much detail, this is because of limitations in the way merges are tracked by
the svn:mergeinfo property (see the section called “Mergeinfo and Previews” for details). These limitations
mean that merges into mixed-revision working copies can result in unexpected text and tree conflicts.? We don't
want any needless conflicts, so we update the working copy and then reattempt the merge.

3The svn merge subcommand option --allow-mixed-revisions allows you to override this prohibition, but you should only do so if you
understand the ramifications and have a good reason for it.

115

Branching and Merging

$ svn up
Updating '.':

At revision 380.

$ svn merge "/calc/trunk

—--- Merging r357 through r380 into '.':

U integer.c
U Makefile
A README

—--- Recording mergeinfo for merge of r357 through r380 into '.':
U
$

Subversion knows which trunk changes you previously replicated to your branch, so it carefully replicates only
those changes you don't yet have. And once again, you build, test, and svn commit the local modifications to
your branch.

Subtree Merges and Subtree Mergeinfo

In most of the examples in this chapter the merge target is the root directory of a branch (see the section
called “What's a Branch?”). While this is a best practice, you may occasionally need to merge directly to
some child of the branch root. This type of merge is called a subtree merge and the mergeinfo recorded to
describe it is called subtree mergeinfo. There is nothing special about subtree merges or subtree mergeinfo.
In fact there is really only one important point to keep in mind about these concepts: the complete record
of merges to a branch may not be contained solely in the mergeinfo on the branch root. You may have to
look to any subtree mergeinfo to get a full accounting. Fortunately Subversion does this for you and rarely
will you need to concern yourself with it. A brief example will help explain:

We need to merge r958 from trunk to branches/proj-X/doc/INSTALL,
but that revision also affects main.c, which we don't want to merge:
$ svn log --verbose --quiet -r 958 %/
r958 | bruce | 2011-10-20 13:28:11 -0400 (Thu, 20 Oct 2011)
Changed paths:
M /trunk/doc/INSTALL

M /trunk/src/main.c

No problem, we'll do a subtree merge targeting the INSTALL file
directly, but first take a note of what mergeinfo exists on the
root of the branch:

$ cd branches/proj-X

$ svn propget svn:mergeinfo --recursive

Properties on '.':
svn:mergeinfo
/trunk:651-652

Now we perform the subtree merge, note that merge source
and target both point to INSTALL:

$ svn merge ~/trunk/doc/INSTALL doc/INSTALL -c 958

--— Merging r958 into 'doc/INSTALL':

116

Branching and Merging

U doc/INSTALL
--- Recording mergeinfo for merge of r958 into 'doc/INSTALL':
G doc/INSTALL

Once the merge is complete there is now subtree mergeinfo on INSTALL:
$ svn propget svn:mergeinfo --recursive
Properties on '.':
svn:mergeinfo
/trunk:651-652
Properties on 'doc/INSTALL':
svn:mergeinfo
/trunk/doc/INSTALL: 651-652, 958

What if we then decide we do want all of r958? Easy, all we need do is
repeat the merge of that revision, but this time to the root of the

branch, Subversion notices the subtree mergeinfo on INSTALL and doesn't
try to merge any changes to it, only the changes to main.c are merged:
$ svn merge ~/subversion/trunk . -c 958

--- Merging r958 into '.':

U src/main.c

--- Recording mergeinfo for merge of r958 into '.':
U

--— Eliding mergeinfo from 'doc/INSTALL':

U doc/INSTALL

You might be wondering why INSTALL in the above example has mergeinfo for r651-652, when we only
merged rg58. This is due to mergeinfo inheritance, which we'll cover in the sidebar Mergeinfo Inheritance.
Also note that the subtree mergeinfo on doc/INSTALL was removed, or “elided”. This is called mergeinfo
elision and it occurs whenever Subversion detects redundant subtree mergeinfo.

Prior to Subversion 1.7, merges unconditionally updated all of the subtree mergeinfo under
o/) the target to describe the merge. For users with a lot of subtree mergeinfo this meant that rel-
atively “simple” merges (e.g. one which applied a diff to only a single file) resulted in changes
to every subtree with mergeinfo, even those that were not parents of the effected path(s). This
caused some level of confusion and frustration. Subversion 1.7 addresses this problem by only
updating the mergeinfo on subtrees which are parents of the paths modified by the merge (i.e.
paths changed, added, or deleted by application of the difference, see the section called “Merge
Syntax: Full Disclosure”). The one exception to this behavior regards the actual merge target;
the merge target's mergeinfo is always updated to describe the merge, even if the applied dif-

ference made no changes.

Reintegrating a Branch

What happens when you finally finish your work, though? Your new feature is done, and you're ready to merge

your branch changes back to the trunk (so your team can enjoy the bounty of your labor). The process is simple.

First, bring your branch into sync with the trunk again, just as you've been doing all along*:

4With Subversion 1.7 you don't absolutely have to do all your sync merges to the root of your branch as we do in this example. If your branch is
effectively synced via a series of subtree merges then the reintegrate will work, but ask yourself, if the branch is effectively synced, then why are

you doing subtree merges? Doing so is almost always needlessly complex.

117

Branching and Merging

$ svn merge ~/calc/trunk

—-—-- Merging r381 through r385 into '.':

U button.c

U README

—--- Recording mergeinfo for merge of r381 through r385 into '.':
U

S # build, test,

$ svn commit -m "Final merge of trunk changes to my-calc-branch."

Sending
Sending button.c
Sending README

Transmitting file data

Committed revision 390.

Now, use svn merge with the --reintegrate option to replicate your branch changes back into the trunk.
You'll need a working copy of /trunk. You can get one by doing an svn checkout, dredging up an old trunk
working copy from somewhere on your disk, or using svn switch (see the section called “Traversing Branches”).
Your trunk working copy cannot have any local edits or contain a mixture of revisions (see the section called
“Mixed-revision working copies”). While these are typically best practices for merging anyway, they are required
when using the --reintegrate option.

Once you have a clean working copy of the trunk, you're ready to merge your branch back into it:

S pwd
/home/user/calc-trunk

S svn update # (make sure the working copy is up to date)
Updating '.':
At revision 390.

$ svn merge --reintegrate “/calc/branches/my-calc-branch
—-—-- Merging differences between repository URLs into '.':

U button.c

U integer.c

U Makefile

Vo

—-—-- Recording mergeinfo for merge between repository URLs into
U

$ # build, test, verify,

$ svn commit -m "Merge my-calc-branch back into trunk!"

Sending

Sending button.c
Sending integer.c
Sending Makefile

Transmitting file data

Committed revision 391.

Congratulations, your branch-specific changes have now been merged back into the main line of development.
Notice our use of the --reintegrate option this time around. The option is critical for reintegrating changes

118

Branching and Merging

from a branch back into its original line of development—don't forget it! It's needed because this sort of “merge
back” is a different sort of work than what you've done up until now. Previously, we were asking svn merge
to grab the “next set” of changes from one line of development (the trunk) and duplicate them to another (your
branch). This is fairly straightforward, and each time Subversion knows how to pick up where it left off. In our
prior examples, you can see that first it merges the ranges 345:356 from trunk to branch; later on, it continues by
merging the next contiguously available range, 356:380. When doing the final sync, it merges the range 380:385.

When merging your branch back to the trunk, however, the underlying mathematics are quite different. Your
feature branch is now a mishmash of both duplicated trunk changes and private branch changes, so there's
no simple contiguous range of revisions to copy over. By specifying the --reintegrate option, you're asking
Subversion to carefully replicate only those changes unique to your branch. (And in fact, it does this by comparing
the latest trunk tree with the latest branch tree: the resulting difference is exactly your branch changes!)

Keep in mind that the --reintegrate option is quite specialized in contrast to the more general nature of most
Subversion subcommand options. It supports the use case described above, but has little applicability outside of
that. Because of this narrow focus, in addition to requiring an up-to-date working copy® with no mixed-revisions,
it will not function in combination with most of the other svn merge options. You'll get an error if you use any
non-global options but these: --accept, --dry-run, --diff3-cmd, --extensions, or -—quiet.

Now that your private branch is merged to trunk, you may wish to remove it from the repository:

$ svn delete "~/calc/branches/my-calc-branch \
-m "Remove my-calc-branch, reintegrated with trunk in r391."

Committed revision 392.

But wait! Isn't the history of that branch valuable? What if somebody wants to audit the evolution of your feature
someday and look at all of your branch changes? No need to worry. Remember that even though your branch is
no longer visible in the /branches directory, its existence is still an immutable part of the repository's history.
A simple svn log command on the /branches URL will show the entire history of your branch. Your branch
can even be resurrected at some point, should you desire (see the section called “Resurrecting Deleted Items”).

Once a --reintegrate merge is done from branch to trunk, the branch is no longer usable for further work.
It's not able to correctly absorb new trunk changes, nor can it be properly reintegrated to trunk again. For this
reason, if you want to keep working on your feature branch, we recommend destroying it and then re-creating
it from the trunk:

$ svn delete http://svn.example.com/repos/calc/branches/my-calc-branch \
-m "Remove my-calc-branch, reintegrated with trunk in r391."

Committed revision 392.

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/my-calc-branch \
-m "Recreate my-calc-branch from trunk@HEAD."

Committed revision 393.

There is another way of making the branch usable again after reintegration, without deleting the branch. See the
section called “Keeping a Reintegrated Branch Alive”.

5Reintegrate merges are allowed if the target is a shallow checkout (see the section called “Sparse Directories”) but any paths affected by the diff
which are “missing” due to the sparse working copy will be skipped, probably not what you intended!

119

Branching and Merging

Mergeinfo and Previews

The basic mechanism Subversion uses to track changesets—that is, which changes have been merged to
which branches—is by recording data in versioned properties. Specifically, merge data is tracked in the
svn:mergeinfo property attached to files and directories. (If you're not familiar with Subversion properties,
see the section called “Properties”.)

You can examine the property, just like any other:

$ cd my-calc-branch

$ svn propget svn:mergeinfo .
/trunk:341-390

$

While it is possible to modify svn : mergeinfo just as you might any other versioned property,
Q we strongly discourage doing so unless you really know what you're doing.

The amount of svn:mergeinfo on a single path can get quite large, as can the output of a
o/) svn propget --recursive or svn proplist --recursive when dealing with large amounts
of subtree mergeinfo, see Subtree Merges and Subtree Mergeinfo . The formatted output pro-
duced by the --verbose option with either of these subcommands is often very helpful in

these cases.

The svn:mergeinfo property is automatically maintained by Subversion whenever you run svn merge. Its
value indicates which changes made to a given path have been replicated into the directory in question. In
our previous example, the path which is the source of the merged changes is /trunk and the directory which
has received the changes is /branches/my-calc-branch. Earlier versions of Subversion maintained the
svn:mergeinfo property silently. You could still detect the changes, after a merge completed, with the svn
diff or svn status subcommands, but the merge itself gave no indication when it changed the svn:mergeinfo
property. This is no longer true in Subversion 1.7, which has several new notifications to alert you when a merge
updates the svn :mergeinfo property. These notifications all begin with “--- Recording mergeinfo for” and ap-
pear at the end of the merge. Unlike other merge notifications, these don't describe the application of a difference
to a working copy (see the section called “Merge Syntax: Full Disclosure”), but instead describe "housekeeping"
changes made to keep track of what was merged.

Subversion also provides a subcommand, svn mergeinfo, which is helpful in seeing not only which changesets
a directory has absorbed, but also which changesets it's still eligible to receive. This gives a sort of preview of
which changes a subsequent svn merge operation would replicate to your branch.

$ cd my-calc-branch

Which changes have already been merged from trunk to branch?
$ svn mergeinfo */calc/trunk

r341

r342

r343

120

Branching and Merging

r388
r389
r390

Which changes are still eligible to merge from trunk to branch?
$ svn mergeinfo “/calc/trunk --show-revs eligible

r391

r392

r393

r394

r395

$

The svn mergeinfo command requires a “source” URL (where the changes come from), and takes an optional
“target” URL (where the changes merge to). If no target URL is given, it assumes that the current working direc-
tory is the target. In the prior example, because we're querying our branch working copy, the command assumes
we're interested in receiving changes to /branches/mybranch from the specified trunk URL.

Mergeinfo Inheritance

When a path has the svn:mergeinfo property set on it we say it has explicit mergeinfo. This explicit
mergeinfo describes not only what changes were merged into that particular directory, but also all the
children of that directory (because those children inherit the mergeinfo of their parent path). For example:

What explicit mergeinfo exists on a branch?
$ svn propget svn:mergeinfo "/branches/proj-X —--recursive
/trunk:651-652

What children does proj-X have?

$ svn list --recursive " /branches/proj-X
doc/

doc/INSTALL

README

src/main.c

Ask what revs were merged to a file with no explicit mergeinfo
$ svn mergeinfo */trunk/src/main.c */branches/proj-X/src/main.c
651

652

Notice from our first subcommand that only the root of /branches/proj-x has any explicit mergeinfo.
However, when we use svn mergeinfo to ask what was merged to /branches/proj-x/src/main.c
it reports that the two revisions described in the explicit mergeinfo on /branches/proj-X were merged.
This is because /branches/proj-X/src/main.c, having no explicit mergeinfo of its own, inherits the
mergeinfo from its nearest parent with explicit mergeinfo, /branches/proj-X.

There are two cases in which mergeinfo is not inherited. First, if a path has explicit mergeinfo, then it never
inherits mergeinfo. Another way to think of this is that explicit mergeinfo is always a complete record of
the merges to a given path, once it exists it overrides any mergeinfo that path might otherwise inherit.
The second way is when dealing with non-inheritable mergeinfo, a special type of explicit mergeinfo that
applies only to the directory on which the svn :mergeinfo property is set (and it's only directories, non-

inheritable mergeinfo is never set on files). For example:

121

Branching and Merging

The '*' decorator indicates non-inheritable mergeinfo
$ svn propget svn:mergeinfo */branches/proj-X
/trunk:651-652, 758%*

Revision 758 is non-inheritable, but still applies to the path it is
set on. Here the '*' decorator signals that r758 is only partially

merged from trunk.

$ svn mergeinfo "/trunk */branches/proj-X

651

652

758%

Revision 758 is not reported as merged because it is non-inheritable
and applies only to ~/trunk

$ svn mergeinfo */trunk/src/main.c */branches/proj-X/src/main.c

651

652

You might never have to think about mergeinfo inheritance or encounter non-inheritable mergeinfo in
your own repository. A discussion of the full ramifications of mergeinfo inheritance are beyond the scope
of this book. If you have more questions check out some of the references mentioned in the section called
“The Final Word on Merge Tracking”

With the release of Subversion 1.7, the svn mergeinfo subcommand can also account for subtree mergeinfo and
non-inheritable mergeinfo. It accounts for subtree mergeinfo by use of the --recursive or --depth options,
while non-inheritable mergeinfo is considered by default.

Let's say we have a branch with both subtree and non-inheritable mergeinfo:

S svn propget svn:mergeinfo --recursive -v
Non-inheritable mergeinfo
Properties on '.':
svn:mergeinfo
/trunk:651-652, 758*
Subtree mergeinfo
Properties on 'doc/INSTALL':
svn:mergeinfo
/trunk/doc/INSTALL:651-652,958,1060

From the above mergeinfo we see that r758 has only been merged into the root of the branch, but not any of the
root's children. We also see that both r958 and r1060 have been merged only to the doc/INSTALL file. When we
use svn mergeinfo with the --recursive option to see what has been merged from ~/t runk to this branch,
we see two revisions are flagged with the * marker:

$ svn mergeinfo --show-revs=merged */trunk . --recursive
651
652
758%*
958%*
1060

122

Branching and Merging

The * indicates revisions that are only partially merged to the target in question (the meaning is the same if we
are checking for eligible revisions). What this means in this example is that if we tried to merge r758 or r958
from " /trunk then more changes would result. Likewise, because r1060 is not flagged with a *, we know that
it only affects doc/INSTALL and that trying to merge it would have no result.®

Another way to get a more precise preview of a merge operation is to use the -—dry-run option:

$ svn merge "/calc/trunk —--dry-run
—--- Merging r391 through r395 into 'branch':

U integer.c

S svn status

nothing printed, working copy is still unchanged.

The --dry-run option doesn't actually apply any local changes to the working copy. It shows only status codes
that would be printed in a real merge. It's useful for getting a “high-level” preview of the potential merge, for
those times when running svn diff gives too much detail.
After performing a merge operation, but before committing the results of the merge, you can
Q} use svh diff --depth=empty /path/to/merge/target to see only the changes to
the immediate target of your merge. If your merge target was a directory, only property differ-

ences are displayed. This is a handy way to see the changes to the svn :mergeinfo property
recorded by the merge operation, which will remind you about what you've just merged.

Of course, the best way to preview a merge operation is to just do it! Remember, running svn merge isn't an
inherently risky thing (unless you've made local modifications to your working copy—but we already stressed
that you shouldn't merge into such an environment). If you don't like the results of the merge, simply run svn
revert . -Rtorevertthe changes from your working copy and retry the command with different options. The
merge isn't final until you actually svn commit the results.

Undoing Changes

An extremely common use for svn merge is to roll back a change that has already been committed. Suppose
you're working away happily on a working copy of /calc/trunk, and you discover that the change made way
back in revision 303, which changed integer. c, is completely wrong. It never should have been committed.
You can use svn merge to “undo” the change in your working copy, and then commit the local modification to
the repository. All you need to do is to specify a reverse difference. (You can do this by specifying --revision
303:302, or by an equivalent --change -303.)

$ svn merge -c -303 ~/calc/trunk

—-—- Reverse-merging r303 into 'integer.c':

U integer.c

--- Recording mergeinfo for reverse merge of r303 into 'integer.c':

U A-branch

$ svn status
M

6 This is often termed an “inoperative” merge. Though in this example the merge of r1060 would do something: It would update the mergeinfo on
the root of the branch, but it would be inoperative in the sense that no diff would be applied.

123

Branching and Merging

M integer.c
$ svn diff

verify that the change is removed

$ svn commit -m "Undoing change committed in r303."
Sending integer.c
Transmitting file data .

Committed revision 350.

As we mentioned earlier, one way to think about a repository revision is as a specific changeset. By using the -r
option, you can ask svn merge to apply a changeset, or a whole range of changesets, to your working copy. In
our case of undoing a change, we're asking svn merge to apply changeset r303 to our working copy backward.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so you should use
svn status and svn diff to confirm that your work is in the state you want it to be in, and then use svn commit
to send the final version to the repository. After committing, this particular changeset is no longer reflected in
the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in revision
303. If somebody checks out a version of the calc project between revisions 303 and 349, she'll still see the
bad change, right?

Yes, that's true. When we talk about “removing” a change, we're really talking about removing it from the HEAD
revision. The original change still exists in the repository's history. For most situations, this is good enough.
Most people are only interested in tracking the HEAD of a project anyway. There are special cases, however,
where you really might want to destroy all evidence of the commit. (Perhaps somebody accidentally committed
a confidential document.) This isn't so easy, it turns out, because Subversion was deliberately designed to never
lose information. Revisions are immutable trees that build upon one another. Removing a revision from history
would cause a domino effect, creating chaos in all subsequent revisions and possibly invalidating all working

copies.”

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a file or
directory, it may be gone from the HEAD revision, but the object still exists in earlier revisions. One of the most
common questions new users ask is, “How do I get my old file or directory back?”

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you can think
of every object in the repository as existing in a sort of two-dimensional coordinate system. The first coordinate
is a particular revision tree, and the second coordinate is a path within that tree. So every version of your file or
directory is defined by a specific coordinate pair. (Remember the “peg revision” syntax—foo.c@224—mentioned
back in the section called “Peg and Operative Revisions”.)

First, you might need to use svn log to discover the exact coordinate pair you wish to resurrect. A good strategy
istorun svn log --verbose in a directory that used to contain your deleted item. The --verbose (-v)
option shows a list of all changed items in each revision; all you need to do is find the revision in which you

"The Subversion project has plans, however, to someday implement a command that would accomplish the task of permanently deleting informa-
tion. In the meantime, see the section called “svndumpfilter” for a possible workaround.

124

Branching and Merging

deleted the file or directory. You can do this visually, or by using another tool to examine the log output (via
grep, or perhaps via an incremental search in an editor).

$ cd parent-dir

$ svn log -v

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed paths:

D /calc/trunk/real.c

M /calc/trunk/integer.c

Added fast fourier transform functions to integer.c.

Removed real.c because code now in double.c.

In the example, we're assuming that you're looking for a deleted file real . c. By looking through the logs of a
parent directory, you've spotted that this file was deleted in revision 808. Therefore, the last version of the file to
exist was in the revision right before that. Conclusion: you want to resurrect the path /calc/trunk/real.c

from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two different
choices.

One option is to use svn merge to apply revision 808 “in reverse.” (We already discussed how to undo changes
in the section called “Undoing Changes”.) This would have the effect of re-adding real . c as alocal modification.
The file would be scheduled for addition, and after a commit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying revision 808 would
not only schedule real. c for addition, but the log message indicates that it would also undo certain changes
to integer.c, which you don't want. Certainly, you could reverse-merge revision 808 and then svn revert
the local modifications to integer. c, but this technique doesn't scale well. What if 9o files were changed in
revision 808?

A second, more targeted strategy is not to use svn merge at all, but rather to use the svn copy command.
Simply copy the exact revision and path “coordinate pair” from the repository to your working copy:

$ svn copy */calc/trunk/real.c@807 ./real.c

$ svn status

A 4+ real.c

S svn commit -m "Resurrected real.c from revision 807, /calc/trunk/real.c."
Adding real.c
Transmitting file data .

Committed revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but scheduled for
addition “with history.” Subversion remembers where it was copied from. In the future, running svn log on this
file will traverse back through the file's resurrection and through all the history it had prior to revision 807. In
other words, this new real . c isn't really new; it's a direct descendant of the original, deleted file. This is usually

125

Branching and Merging

considered a good and useful thing. If, however, you wanted to resurrect the file without maintaining a historical
link to the old file, this technique works just as well:

$ svn cat "/calc/trunk/real.c@807 > ./real.c

S svn add real.c

A real.c

S svn commit -m "Re-created real.c from revision 807."
Adding real.c
Transmitting file data .

Committed revision 1390.

Although our example shows us resurrecting a file, note that these same techniques work just as well for resur-
recting deleted directories. Also note that a resurrection doesn't have to happen in your working copy—it can
happen entirely in the repository:

$ svn copy "/calc/trunk/real.c@807 ~/calc/trunk/ \
-m "Resurrect real.c from revision 807."

Committed revision 1390.

$ svn update
Updating '.':
A real.c

Updated to revision 1390.

Advanced Merging

Here ends the automated magic. Sooner or later, once you get the hang of branching and merging, you're going
to have to ask Subversion to merge specific changes from one place to another. To do this, you're going to have to
start passing more complicated arguments to svn merge. The next section describes the fully expanded syntax
of the command and discusses a number of common scenarios that require it.

Cherrypicking

Just as the term “changeset” is often used in version control systems, so is the term cherrypicking. This word
refers to the act of choosing one specific changeset from a branch and replicating it to another. Cherrypicking
may also refer to the act of duplicating a particular set of (not necessarily contiguous!) changesets from one
branch to another. This is in contrast to more typical merging scenarios, where the “next” contiguous range of
revisions is duplicated automatically.

Why would people want to replicate just a single change? It comes up more often than you'd think. For example,
let's go back in time and imagine that you haven't yet merged your private feature branch back to the trunk. At
the water cooler, you get word that Sally made an interesting change to integer . c on the trunk. Looking over
the history of commits to the trunk, you see that in revision 355 she fixed a critical bug that directly impacts the
feature you're working on. You might not be ready to merge all the trunk changes to your branch just yet, but
you certainly need that particular bug fix in order to continue your work.

S svn diff -c 355 “~/calc/trunk

126

Branching and Merging

Index: integer.c

-—-- integer.c (revision 354)

+++ integer.c (revision 355)

@@ -147,7 +147,7 @@
case 6: sprintf (info->operating system, "HPFS (0S/2 or NT)"); break;
case 7: sprintf (info->operating system, "Macintosh"); break;
case 8: sprintf(info->operating system, "Z-System"); break;

= case 9: sprintf (info->operating system, "CP/MM");

+ case 9: sprintf (info->operating system, "CP/M"); break;
case 10: sprintf(info->operating system, "TOPS-20"); break;
case 11: sprintf (info->operating system, "NTFS (Windows NT)"); break;
case 12: sprintf (info->operating system, "QDOS"); break;

Just as you used svn diff in the prior example to examine revision 355, you can pass the same option to svn
merge:

$ svn merge -c 355 "/calc/trunk

--- Merging r355 into '.':

U integer.c

—--- Recording mergeinfo for merge of r355 into '.':
U

S svn status

M integer.c

You can now go through the usual testing procedures before committing this change to your branch. After the
commit, Subversion marks r355 as having been merged to the branch so that future “magic” merges that syn-
chronize your branch with the trunk know to skip over r355. (Merging the same change to the same branch
almost always results in a conflict!)

$ cd my-calc-branch

S svn propget svn:mergeinfo
/trunk:341-349, 355

Notice that r355 isn't listed as "eligible" to merge, because
it's already been merged.

$ svn mergeinfo "/calc/trunk --show-revs eligible
r350

r351

r352

r353

r354

r356

r357

r358

r359

r360

$ svn merge ~/calc/trunk

127

Branching and Merging

--- Merging r350 through r354 into '.':

U

U integer.c

U Makefile

--- Merging r356 through r360 into '.':

U

U integer.c

U button.c

--- Recording mergeinfo for merge of r350 through r360 into '.':
U

This use case of replicating (or backporting) bug fixes from one branch to another is perhaps the most popular
reason for cherrypicking changes; it comes up all the time, for example, when a team is maintaining a “release
branch” of software. (We discuss this pattern in the section called “Release Branches”.)

Did you notice how, in the last example, the merge invocation merged two distinct ranges?
Q The svn merge command applied two independent patches to your working copy to skip over
changeset 355, which your branch already contained. There's nothing inherently wrong with
this, except that it has the potential to make conflict resolution trickier. If the first range of
changes creates conflicts, you must resolve them interactively for the merge process to con-
tinue and apply the second range of changes. If you postpone a conflict from the first wave of

changes, the whole merge command will bail out with an error message.8

A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax
in many cases. Be sure to read about them in Chapter 9, Subversion Complete Reference for details, or ask svn
help. For example, svin merge requires a working copy path as a target, that is, a place where it should apply the
generated patch. If the target isn't specified, it assumes you are trying to perform one of the following common
operations:

« You want to merge directory changes into your current working directory.

« You want to merge the changes in a specific file into a file by the same name that exists in your current working
directory.

If you are merging a directory and haven't specified a target path, svn merge assumes the first case and tries to
apply the changes into your current directory. If you are merging a file, and that file (or a file by the same name)
exists in your current working directory, svn merge assumes the second case and tries to apply the changes
to a local file with the same name.

Merge Syntax: Full Disclosure

You've now seen some examples of the svn merge command, and you're about to see several more. If you're
feeling confused about exactly how merging works, you're not alone. Many users (especially those new to version
control) are initially perplexed about the proper syntax of the command and about how and when the feature
should be used. But fear not, this command is actually much simpler than you think! There's a very easy technique
for understanding exactly how svn merge behaves.

The main source of confusion is the name of the command. The term “merge” somehow denotes that branches
are combined together, or that some sort of mysterious blending of data is going on. That's not the case. A better

8At least, this is true in Subversion 1.7 at the time of this writing. This behavior may improve in future versions of Subversion.

128

Branching and Merging

name for the command might have been svn diff-and-apply, because that's all that happens: two repository
trees are compared, and the differences are applied to a working copy.

If you're using svn merge to do basic copying of changes between branches, it will generally do the right thing
automatically. For example, a command such as the following:

$ svn merge "/calc/branches/some-branch

will attempt to duplicate any changes made on some-branch into your current working directory, which is
presumably a working copy that shares some historical connection to the branch. The command is smart enough
to only duplicate changes that your working copy doesn't yet have. If you repeat this command once a week, it
will only duplicate the “newest” branch changes that happened since you last merged.

If you choose to use the svn merge command in all its full glory by giving it specific revision ranges to duplicate,
the command takes three main arguments:

1. An initial repository tree (often called the left side of the comparison)
2. A final repository tree (often called the right side of the comparison)
3. A working copy to accept the differences as local changes (often called the target of the merge)

Once these three arguments are specified, then the two trees are compared and the differences applied to the
target working copy as local modifications. When the command is done, the results are no different than if you
had hand-edited the files or run various svn add or svn delete commands yourself. If you like the results, you
can commit them. If you don't like the results, you can simply svn revert all of the changes.

The syntax of svn merge allows you to specify the three necessary arguments rather flexibly. Here are some
examples:

$ svn merge http://svn.example.com/repos/branchl@150 \
http://svn.example.com/repos/branch2@212 \

my-working-copy
$ svn merge -r 100:200 http://svn.example.com/repos/trunk my-working-copy

$ svn merge -r 100:200 http://svn.example.com/repos/trunk

The first syntax lays out all three arguments explicitly, naming each tree in the form URL@REV and naming the
working copy target. The second syntax is used as a shorthand for situations when you're comparing two different
revisions of the same URL. The last syntax shows how the working copy argument is optional; if omitted, it
defaults to the current directory.

While the first example shows the “full” syntax of svn merge, use it very carefully; it can result in merges which
do not record any svn :mergeinfo metadata at all. The next section talks a bit more about this.

Merges Without Mergeinfo

Subversion tries to generate merge metadata whenever it can, to make future invocations of svn merge smarter.
There are still situations, however, where svn:mergeinfo data is not created or changed. Remember to be a
bit wary of these scenarios:

129

Branching and Merging

Merging unrelated sources
If you ask svn merge to compare two URLs that aren't related to each other, a patch is still generated and
applied to your working copy, but no merging metadata is created. There's no common history between the
two sources, and future “smart” merges depend on that common history.

Merging from foreign repositories
While it's possible to run a command such as svn merge -r 100:200 http://
svn. foreignproject.com/repos/trunk, the resultant patch also lacks any historical merge metada-
ta. At the time of this writing, Subversion has no way of representing different repository URLs within the
svn:mergeinfo property.

Using --ignore-ancestry
If this option is passed to svn merge, it causes the merging logic to mindlessly generate differences the
same way that svn diff does, ignoring any historical relationships. We discuss this later in this chapter in
the section called “Noticing or Ignoring Ancestry”.

Applying reverse merges from a target's natural history
Earlier in this chapter (the section called “Undoing Changes”) we discussed how to use svn merge to apply
a “reverse patch” as a way of rolling back changes. If this technique is used to undo a change to an object's
personal history (e.g., commit r5 to the trunk, then immediately roll back r5 using svn merge . -c -5),
this sort of merge doesn't affect the recorded mergeinfo.’

Natural History and Implicit Mergeinfo

As we mentioned earlier when discussing Mergeinfo Inheritance, a path that has the svn:mergeinfo
property set on it is said to have “explicit” mergeinfo. Yes, this implies a path can have “implicit” mergeinfo,
too! Implicit mergeinfo, or natural history, is simply a path's own history (see the section called “Exam-
ining History”) interpreted as mergeinfo. While implicit mergeinfo is largely an implementation detail, it
can be a useful abstraction for understanding merge tracking behavior.

Let's say you created ~ /trunk in revision 100 and then later, in revision 201, created ~ /branches/fea-
ture-branch as a copy of */trunk@200. The natural history of ~ /branches/feature-branch con-
tains all the repository paths and revision ranges through which the history of the new branch has ever
passed:

/trunk:100-200
/branches/feature-branch:201

With each new revision added to the repository, the natural history—and thus, implicit mergeinfo—of the
branch continues to expand to include those revisions until the day the branch is deleted. Here's what the
implicit mergeinfo of our branch would look like when the HEAD revision of the repository had grown to
234:

/trunk:100-200
/branches/feature-branch:201-234

9Interestingly, after rolling back a revision like this, we wouldn't be able to reapply the revision using svn merge . -c 5, since the mergeinfo
would already list r5 as being applied. We would have to use the --ignore-ancestry option to make the merge command ignore the existing
mergeinfo!

130

Branching and Merging

Implicit mergeinfo does not actually show up in the svn : mergeinfo property, but Subversion acts as if it
does. This is why if you check out ~ /branches/feature-branch and then run svn merge ~/trunk
-c 58 in the resulting working copy, nothing happens. Subversion knows that the changes committed
to ~/trunk in revision 58 are already present in the target's natural history, so there's no need to try to
merge them again. After all, avoiding repeated merges of changes is the primary goal of Subversion's merge
tracking feature!

More on Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also
capable of creating conflicts. The conflicts produced by svn merge, however, are sometimes different, and this
section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular revision,
the changes sent by the server always apply “cleanly” to your working copy. The server produces the delta by
comparing two trees: a virtual snapshot of your working copy, and the revision tree you're interested in. Because
the left hand side of the comparison is exactly equal to what you already have, the delta is guaranteed to correctly
convert your working copy into the right hand tree.

But svn merge has no such guarantees and can be much more chaotic: the advanced user can ask the server to
compare any two trees at all, even ones that are unrelated to the working copy! This means there's large potential
for human error. Users will sometimes compare the wrong two trees, creating a delta that doesn't apply cleanly.
The svn merge subcommand does its best to apply as much of the delta as possible, but some parts may be
impossible. A common sign that you merged the wrong delta is unexpected tree conflicts:

$ svn merge -r 1288:1351 http://svn.example.com/myrepos/branch
--- Merging rl1289 through rl1351 into '.':

C bar.c

C foo.c

C docs
--- Recording mergeinfo for merge of rl289 through rl1351 into '.':
U
Summary of conflicts:

Tree conflicts: 3

S svn st
I C bar.c

> local missing, incoming edit upon merge
0 C foo.c

> local missing, incoming edit upon merge
I C docs

> local delete, incoming edit upon merge

In the previous example, it might be the case that bar.c, foo.c, and docs all exist in both snapshots of the
branch being compared. The resultant delta wants to change the contents of the corresponding paths in your
working copy, but those paths don't exist in the working copy. Whatever the case, the preponderance of tree
conflicts most likely means that the user compared the wrong two trees; it's a classic sign of user error. When this
happens, it's easy to recursively revert all the changes created by the merge (svn revert . --recursive),
delete any unversioned files or directories left behind after the revert, and rerun svn merge with the correct
arguments.

131

Branching and Merging

Also keep in mind that a merge into a working copy with no local edits can still produce text conflicts.

$ svn merge -c 1701 http://svn.example.com/myrepos/branchX --accept postpone
--- Merging rl1701 into '.':

€ glub.c

C sputter.c

--- Recording mergeinfo for merge of rl701 into '.':

U

Summary of conflicts:

Text conflicts: 2

C:\SVN\src-branch-1.7.x>svn st

M .

? glub.c.merge-1eft.r1700

? glub.c.merge-right.r1701

C glub.c

;i glub.c.working

? sputter.c.merge-left.r1700
? sputter.c.merge-right.rl1701
@ sputter.c

;i sputter.c.working

Summary of conflicts:

Text conflicts: 2

How can a conflict possibly happen? Again, because the user can request svn merge to define and apply any
old delta to the working copy, that delta may contain textual changes that don't cleanly apply to a working file,
even if the file has no local modifications.

Another small difference between svn update and svn merge is the names of the full-text files created
when a conflict happens. In the section called “Resolve Any Conflicts”, we saw that an update produces files
named filename.mine, filename.rOLDREV, and filename.rNEWREV. When svn merge produces a
conflict, though, it creates three files named filename.working, filename.merge-left.rOLDREV, and
filename.merge-right.rNEWREV. In this case, the terms “merge-left” and “merge-right” are describing
which side of the double-tree comparison the file came from, “rOLDREV” describes the revision of the left side,
and “rNEWREV” the revision of the right side. In any case, these differing names help you distinguish between
conflicts that happened as a result of an update and ones that happened as a result of a merge.

Blocking Changes

Sometimes there's a particular changeset that you don't want automatically merged. For example, perhaps your
team's policy is to do new development work on / t runk, but is more conservative about backporting changes to a
stable branch you use for releasing to the public. On one extreme, you can manually cherrypick single changesets
from the trunk to the branch—just the changes that are stable enough to pass muster. Maybe things aren't quite
that strict, though; perhaps most of the time you just let svn merge automatically merge most changes from
trunk to branch. In this case, you want a way to mask a few specific changes out, that is, prevent them from ever
being automatically merged.

Through Subversion 1.7, the only way to block a changeset is to make the system believe that the change has
already been merged. To do this, invoke the merge subcommand with the --record-only option:

$ cd my-calc-branch

132

Branching and Merging

$ svn propget svn:mergeinfo
/trunk:1680-3305

Let's make the metadata list r3328 as already merged.
$ svn merge -c 3328 --record-only “/calc/trunk

--- Recording mergeinfo for merge of r3328 into '.':

U

S svn status
M

$ svn propget svn:mergeinfo
/trunk:1680-3305,3328

$ svn commit -m "Block r3328 from being merged to the branch."

Beginning with Subversion 1.7, --record-on1ly merges are transitive. This means that, in addition to recording
mergeinfo describing the blocked revision(s), any svn:mergeinfo property differences in the merge source
are also applied. For example, let's say we want to block the 'frazzle' feature from ever being merged from */
trunk to our */branches/proj-X branch. We know that all the frazzle work was done on its own branch,
which was reintegrated to t runk in revision 1055:

$ svn log -v *~/trunk -r 1055

r1055 | francesca | 2011-09-22 07:40:06 -0400 (Thu, 22 Sep 2011) | 3 lines
Changed paths:

M /trunk

M /trunk/src/frazzle.c

Reintegrate the frazzle-feature-branch to trunk.

Because revision 1055 was a reintegrate merge we know that mergeinfo was recorded describing the merge:

$ svn diff ~/trunk -c 1055 --depth empty

Index:

-—— . (revision 1054)

+++ . (revision 1055)

Property changes on:

Modified: svn:mergeinfo
Merged /branches/frazzle-feature-branch:r997-1003

Now simply blocking merges of revision 1055 from ~/trunk isn't foolproof since someone could
merge r996:1003 directly from ~/branches/frazzle-feature-branch. Fortunately the transitive na-
ture of --record-only merges in Subversion 1.7 prevents this; the --record-only merge applies the
svn:mergeinfo diff from revision 1055, thus blocking merges directly from the frazzle branch and as it has
always done prior to Subversion 1.7, it blocks merges of revision 1055 directly from ~/t runk:

133

Branching and Merging

$ cd branches/proj-X

$ svn merge "/trunk . -c 1055 --record-only

--- Merging rl1l055 into '.':
G

—--- Recording mergeinfo for merge of rl055 into '.':
G

$ svn diff --depth empty .

Index:

-—— . (revision 1070)

S (working copy)

Property changes on:

Modified: svn:mergeinfo
Merged /trunk:rl1055
Merged /branches/frazzle-feature-branch:r997-1003

Blocking changes with --record-only works, but it's also a little bit dangerous. The main problem is that
we're not clearly differentiating between the ideas of “I already have this change” and “I don't have this change,
but don't currently want it.” We're effectively lying to the system, making it think that the change was previously
merged. This puts the responsibility on you—the user—to remember that the change wasn't actually merged,
it just wasn't wanted. There's no way to ask Subversion for a list of “blocked changelists.” If you want to track
them (so that you can unblock them someday) you'll need to record them in a text file somewhere, or perhaps
in an invented property.

Keeping a Reintegrated Branch Alive

There is an alternative to destroying and re-creating a branch after reintegration. To understand why it works
you need to understand why the branch is initially unfit for further use after it has been reintegrated.

Let's assume you created your branch in revision A. While working on your branch, you created one or more
revisions which made changes to the branch. Before reintegrating your branch back to trunk, you made a final
merge from trunk to your branch, and committed the result of this merge as revision B.

When reintegrating your branch into the trunk, you create a new revision X which changes the trunk. The changes
made to trunk in this revision X are semantically equivalent to the changes you made to your branch between
revisions A and B.

If you now try to merge outstanding changes from trunk to your branch, Subversion will consider changes made
in revision X as eligible for merging into the branch. However, since your branch already contains all the changes
made in revision X, merging these changes can result in spurious conflicts! These conflicts are often tree conflicts,
especially if renames were made on the branch or the trunk while the branch was in development.

So what can be done about this? We need to make sure that Subversion does not try to merge revision X into
the branch. This is done using the --record-only merge option, which was introduced in the section called
“Blocking Changes”.

To carry out the record-only merge, get a working copy of the branch which was just reintegrated in revision X,
and merge just revision X from trunk into your branch, making sure to use the --record-only option.

134

Branching and Merging

This merge uses the cherry-picking merge syntax, which was introduced in the section called “Cherrypicking”.
Continuing with the running example from the section called “Reintegrating a Branch”, where revision X was
revision 391:

$ cd my-calc-branch
S svn update
Updating '.':
Updated to revision 393.
$ svn merge --record-only -c 391 ~/calc/trunk
--- Recording mergeinfo for merge of r391 into '.':
U
$ svn commit -m "Block revision 391 from being merged into my-calc-branch."

Sending
Committed revision 394.

Now your branch is ready to soak up changes from the trunk again. After another sync of your branch to the
trunk, you can even reintegrate the branch a second time. If necessary, you can do another record-only merge
to keep the branch alive. Rinse and repeat.

It should now also be apparent why deleting the branch and re-creating it has the same effect as doing the above
record-only merge. Because revision X is part of the natural history (see the sidebar Natural History and Implicit
Mergeinfo) of the newly created branch, Subversion will never attempt to merge revision X into the branch,
avoiding spurious conflicts.

Merge-Sensitive Logs and Annotations

One of the main features of any version control system is to keep track of who changed what, and when they
did it. The svn log and svn blame subcommands are just the tools for this: when invoked on individual files,
they show not only the history of changesets that affected the file, but also exactly which user wrote which line
of code, and when she did it.

When changes start getting replicated between branches, however, things start to get complicated. For example,
if you were to ask svn log about the history of your feature branch, it would show exactly every revision that
ever affected the branch:

$ cd my-calc-branch

$ svn log —-g

r343 | user | 2002-11-07 13:50:10 -0600 (Thu, 07 Nov 2002)

Branching and Merging

r341 | user | 2002-11-03 07:17:16 -0600 (Sun, 03 Nov 2002)

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002)

r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002)

But is this really an accurate picture of all the changes that happened on the branch? What's left out here is the
fact that revisions 390, 381, and 357 were actually the results of merging changes from the trunk. If you look
at one of these logs in detail, the multiple trunk changesets that comprised the branch change are nowhere to
be seen:

$ svn log -v -r 390

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed paths:

M /branches/my-calc-branch/button.c

M /branches/my-calc-branch/README

Final merge of trunk changes to my-calc-branch.

We happen to know that this merge to the branch was nothing but a merge of trunk changes. How can we see
those trunk changes as well? The answer is to use the -—use-merge-history (-g) option. This option expands
those “child” changes that were part of the merge.

$ svn log -v -r 390 -g

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed paths:

M /branches/my-calc-branch/button.c

M /branches/my-calc-branch/README

Final merge of trunk changes to my-calc-branch.

r383 | sally | 2002-11-21 03:19:00 -0600 (Thu, 21 Nov 2002) | 2 lines
Changed paths:
M /branches/my-calc-branch/button.c

Merged via: r390

Fix inverse graphic error on button.

r382 | sally | 2002-11-20 16:57:06 -0600 (Wed, 20 Nov 2002) | 2 lines
Changed paths:

M /branches/my-calc-branch/README
Merged via: r390

Document my last fix in README.

By making the log operation use merge history, we see not just the revision we queried (r390), but also the two
revisions that came along on the ride with it—a couple of changes made by Sally to the trunk. This is a much
more complete picture of history!

136

Branching and Merging

The svn blame command also takes the --use-merge-history (-g) option. If this option is neglected, some-
body looking at a line-by-line annotation of but ton. c may get the mistaken impression that you were respon-
sible for the lines that fixed a certain error:

$ svn blame button.c

390 user retval = inverse func(button, path);
390 user return retval;
390 user }

And while it's true that you did actually commit those three lines in revision 390, two of them were actually
written by Sally back in revision 383:

$ svn blame button.c -g

G 383 sally retval = inverse func(button, path);
G 383 sally return retval;
390 user }

Now we know who to really blame for those two lines of code!

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term ancestry. This
word is used to describe the relationship between two objects in a repository: if they're related to each other, one
object is said to be an ancestor of the other.

For example, suppose you commit revision 100, which includes a change to a file foo. c. Then foo.c@99 is an
“ancestor” of foo.c@100. On the other hand, suppose you commit the deletion of foo. c in revision 101, and
then add a new file by the same name in revision 102. In this case, foo.c@99 and foo.c@102 may appear to
be related (they have the same path), but in fact are completely different objects in the repository. They share
no history or “ancestry.”

The reason for bringing this up is to point out an important difference between svn diff and svn merge. The
former command ignores ancestry, while the latter command is quite sensitive to it. For example, if you asked
svn diff to compare revisions 99 and 102 of foo. ¢, you would see line-based diffs; the diff command is blindly
comparing two paths. But if you asked svn merge to compare the same two objects, it would notice that they're
unrelated and first attempt to delete the old file, then add the new file; the output would indicate a deletion
followed by an add:

D foo.c

A foo.c

Most merges involve comparing trees that are ancestrally related to one another; therefore, svn merge defaults
to this behavior. Occasionally, however, you may want the merge command to compare two unrelated trees.
For example, you may have imported two source-code trees representing different vendor releases of a software
project (see the section called “Vendor Branches”). If you ask svn merge to compare the two trees, you'd see

137

Branching and Merging

the entire first tree being deleted, followed by an add of the entire second tree! In these situations, you'll want
svn merge to do a path-based comparison only, ignoring any relations between files and directories. Add the
--ignore-ancestry option to your merge command, and it will behave just like svn diff. (And conversely,
the --notice-ancestry option will cause svn diff to behave like the svn merge command.)

svn:mergeinfo is not considered when svn merge is determining what revisions to merge,

0 The --ignore-ancestry option also disables Merge Tracking. This means that

nor is svn:mergeinfo recorded to describe the merge.

Merges and Moves

A common desire is to refactor source code, especially in Java-based software projects. Files and directories are
shuffled around and renamed, often causing great disruption to everyone working on the project. Sounds like a
perfect case to use a branch, doesn't it? Just create a branch, shuffle things around, and then merge the branch
back to the trunk, right?

Alas, this scenario doesn't work so well right now and is considered one of Subversion's current weak spots. The
problem is that Subversion's svn update command isn't as robust as it should be, particularly when dealing
with copy and move operations.

When you use svn copy to duplicate a file, the repository remembers where the new file came from, but it fails
to transmit that information to the client which is running svn update or svn merge. Instead of telling the
client, “Copy that file you already have to this new location,” it sends down an entirely new file. This can lead to
problems, especially because the same thing happens with renamed files. A lesser-known fact about Subversion
is that it lacks “true renames”—the svn move command is nothing more than an aggregation of svn copy and
svn delete.

For example, suppose that while working on your private branch, you rename integer.c to whole. c. Effec-
tively you've created a new file in your branch that is a copy of the original file, and deleted the original file.
Meanwhile, back on trunk, Sally has committed some improvements to integer. c. Now you decide to merge
your branch to the trunk:

S cd calc/trunk

$ svn merge --reintegrate "/calc/branches/my-calc-branch

--— Merging differences between repository URLs into '.':

D integer.c
A whole.c
U

—--- Recording mergeinfo for merge between repository URLs into '.':
U

This doesn't look so bad at first glance, but it's also probably not what you or Sally expected. The merge operation
has deleted the latest version of the i nteger. c file (the one containing Sally's latest changes), and blindly added
your new whole. c file—which is a duplicate of the older version of integer. c. The net effect is that merging
your “rename” to the trunk has removed Sally's recent changes from the latest revision!

This isn't true data loss. Sally's changes are still in the repository's history, but it may not be immediately obvious
that this has happened. The moral of this story is that until Subversion improves, be very careful about merging
copies and renames from one branch to another.

138

Branching and Merging

Blocking Merge-Unaware Clients

If you've just upgraded your server to Subversion 1.5 or later, there's a risk that pre-1.5 Subversion clients can
cause problems with Merge Tracking. This is because pre-1.5 clients don't support this feature; when one of these
older clients performs svn merge, it doesn't modify the value of the svn:mergeinfo property at all. So the
subsequent commit, despite being the result of a merge, doesn't tell the repository about the duplicated changes
—that information is lost. Later on, when “merge-aware” clients attempt automatic merging, they're likely to run
into all sorts of conflicts resulting from repeated merges.

If you and your team are relying on the merge-tracking features of Subversion, you may want to configure your
repository to prevent older clients from committing changes. The easy way to do this is by inspecting the “ca-
pabilities” parameter in the start-commit hook script. If the client reports itself as having mergeinfo capa-
bilities, the hook script can allow the commit to start. If the client doesn't report that capability, have the hook
deny the commit. Example 4.1, “Merge-tracking gatekeeper start-commit hook script” gives an example of such
a hook script:

Example 4.1. Merge-tracking gatekeeper start-commit hook script

#!/usr/bin/env python

import sys

The start-commit hook is invoked before a Subversion txn is created
in the process of doing a commit. Subversion runs this hook

by invoking a program (script, executable, binary, etc.) named

'start-commit' (for which this file is a template)

with the following ordered arguments:

#

[1] REPOS-PATH (the path to this repository)

[2] USER (the authenticated user attempting to commit)

[3] CAPABILITIES (a colon-separated list of capabilities reported
by the client; see note below)

capabilities = sys.argv[3].split(':")

if "mergeinfo" not in capabilities:
sys.stderr.write ("Commits from merge-tracking-unaware clients are "
"not permitted. Please upgrade to Subversion 1.5 "
"or newer.\n")
sys.exit (1)
sys.exit (0)

For more information about hook scripts, see the section called “Implementing Repository Hooks”.

The Final Word on Merge Tracking

The bottom line is that Subversion's merge-tracking feature has an extremely complex internal implementation,
and the svn:mergeinfo property is the only window the user has into the machinery.

Sometimes mergeinfo will appear on paths that you didn't expect to be touched by an operation. Sometimes
mergeinfo won't be generated at all, when you expect it to. Furthermore, the management of mergeinfo metadata
has a whole set of taxonomies and behaviors around it, such as “explicit” versus “implicit” mergeinfo, “operative”

139

Branching and Merging

versus “inoperative” revisions, specific mechanisms of mergeinfo “elision,” and even “inheritance” from parent
to child directories.

We've chosen to only briefly cover, if at all, these detailed topics for a couple of reasons. First, the level of detail
is absolutely overwhelming for a typical user. Second, and more importantly, the typical user shouldn't have to
understand these concepts; they should typically remain in the background as pesky implementation details. All
that said, if you enjoy this sort of thing, you can get a fantastic overview in a paper posted at CollabNet's website:
http://www.collab.net/community/subversion/articles/merge-info.html.

For now, if you want to steer clear of the complexities of merge tracking, we recommend that you follow these
simple best practices:

« For short-term feature branches, follow the simple procedure described throughout the section called “Basic
Merging”.

« Avoid subtree merges and subtree mergeinfo, perform merges only on the root of your branches, not on sub-
directories or files (see Subtree Merges and Subtree Mergeinfo) .

« Don't ever edit the svn:mergeinfo property directly; use svn merge with the --record-only option to
effect a desired change to the metadata (as demonstrated in the section called “Blocking Changes™).

« Your merge target should be a working copy which represents the root of a complete tree representing a single
location in the repository at a single point in time:

» Don't use the --allow-mixed-revisions option to merge into mixed-revision working copies.

« Don't merge to targets with “switched” subdirectories (as described next in the section called “Traversing
Branches™).

+ Avoid merges to targets with sparse directories. Likewise, don't merge to depths other than --
depth=infinity

» Be sure you have read access to all of the merge source and read/write access to all of the merge target.

Traversing Branches

The svn switch command transforms an existing working copy to reflect a different branch. While this com-
mand isn't strictly necessary for working with branches, it provides a nice shortcut. In one of our earlier exam-
ples, after creating your private branch, you checked out a fresh working copy of the new repository directory.
Instead, you can simply ask Subversion to change your working copy of /calc/trunk to mirror the new branch
location:

$ cd calc

$ svn info | grep URL
URL: http://svn.example.com/repos/calc/trunk

$ svn switch */calc/branches/my-calc-branch

U integer.c
U button.c
U Makefile

140

http://www.collab.net/community/subversion/articles/merge-info.html

Branching and Merging

Updated to revision 341.

$ svn info | grep URL

URL: http://svn.example.com/repos/calc/branches/my-calc-branch

“Switching” a working copy that has no local modifications to a different branch results in the working copy
looking just as it would if you'd done a fresh checkout of the directory. It's usually more efficient to use this
command, because often branches differ by only a small degree. The server sends only the minimal set of changes
necessary to make your working copy reflect the branch directory.

The svn switch command also takes a --revision (-r) option, so you need not always move your working
copy to the HEAD of the branch.

Of course, most projects are more complicated than our calc example, and contain multiple subdirectories.
Subversion users often follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to a new branch directory.
2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch work needs to happen on only a specific subdirectory, she uses
svn switch to move only that subdirectory to the branch. (Or sometimes users will switch just a single working
file to the branch!) That way, the user can continue to receive normal “trunk” updates to most of her working
copy, but the switched portions will remain immune (unless someone commits a change to her branch). This
feature adds a whole new dimension to the concept of a “mixed working copy”—not only can working copies
contain a mixture of working revisions, but they can also contain a mixture of repository locations as well.

Typically switched subdirectories share common ancestry with the location which is switched
0} “away” from. However svn switch can switch a subdirectory to mirror a repository location

which it shares no common ancestry with. To do this you need to use the --ignore-ances-
try option.

If your working copy contains a number of switched subtrees from different repository locations, it continues to
function as normal. When you update, you'll receive patches to each subtree as appropriate. When you commit,
your local changes are still applied as a single, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must
all be within the same repository. Subversion repositories aren't yet able to communicate with one another; that
feature is planned for the future.'

Administrators who need to change the URL of a repository which is accessed via HTTP are
oj encouraged to add to their ht tpd. conf configuration file a permanent redirect from the old
URLlocation to the new one (via the RedirectPermanent directive). Subversion clients will
generally display the new repository URL in error messages generated when the user attempts
to use working copies which still reflect the old URL location. In fact, Subversion 1.7 clients

will go a step further, automatically relocating the working copy to the new URL.

9You can, however, use svn relocate if the URL of your server changes and you don't want to abandon an existing working copy. See svn relocate
in Chapter 9, Subversion Complete Reference for more information and an example.

141

Branching and Merging

Switches and Updates

Have you noticed that the output of svn switch and svn update looks the same? The switch command
is actually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and
then sends a description of the differences back to the client. The only difference between svn switch and
svn update is that the latter command always compares two identical repository paths.

That is, if your working copy is a mirror of /calc/trunk, svn update will automatically compare your
working copy of /calc/trunk to /calc/trunk in the HEAD revision. If you're switching your working
copy to a branch, svn switch will compare your working copy of /calc/trunk to some other branch
directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy

through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any local modifications
in your working copy are preserved when new data arrives from the repository.

Have you ever found yourself making some complex edits (in your / t runk working copy) and
@ suddenly realized, “Hey, these changes ought to be in their own branch?” There is a great two

step technique to do this:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/newbranch \
-m "Create branch 'newbranch'."

Committed revision 353.

$ svn switch ”~/calc/branches/newbranch

At revision 353.

The svn switch command, like svn update, preserves your local edits. At this point, your
working copy is now a reflection of the newly created branch, and your next svn commit

invocation will send your changes there.

Tags

Another common version control concept is a tag. A tag is just a “snapshot” of a project in time. In Subversion,
this idea already seems to be everywhere. Each repository revision is exactly that—a snapshot of the filesystem

after each commit.

However, people often want to give more human-friendly names to tags, such as release-1.0. And they want
to make snapshots of smaller subdirectories of the filesystem. After all, it's not so easy to remember that release
1.0 of a piece of software is a particular subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of /calc/trunk exactly as it looks
in the HEAD revision, make a copy of it:

142

Branching and Merging

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/tags/release-1.0 \

-m "Tagging the 1.0 release of the 'calc' project."

Committed revision 902.

This example assumes that a /calc/tags directory already exists. (If it doesn't, you can create it using svn
mkdir.) After the copy completes, the new release-1.0 directory is forever a snapshot of how the /trunk
directory looked in the HEAD revision at the time you made the copy. Of course, you might want to be more
precise about exactly which revision you copy, in case somebody else may have committed changes to the project
when you weren't looking. So if you know that revision 901 of /calc/trunk is exactly the snapshot you want,
you can specify it by passing -r 901 to the svn copy command.

But wait a moment: isn't this tag creation procedure the same procedure we used to create a branch? Yes, in fact,
it is. In Subversion, there's no difference between a tag and a branch. Both are just ordinary directories that are
created by copying. Just as with branches, the only reason a copied directory is a “tag” is because humans have
decided to treat it that way: as long as nobody ever commits to the directory, it forever remains a snapshot. If
people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first approach
is “hands off”: as a matter of project policy, decide where your tags will live, and make sure all users know how
to treat the directories they copy. (That is, make sure they know not to commit to them.) The second approach is
more paranoid: you can use one of the access control scripts provided with Subversion to prevent anyone from
doing anything but creating new copies in the tags area (see Chapter 6, Server Configuration). The paranoid
approach, however, isn't usually necessary. If a user accidentally commits a change to a tag directory, you can
simply undo the change as discussed in the previous section. This is version control, after all!

Creating a Complex Tag

Sometimes you may want a “snapshot” that is more complicated than a single directory at a single revision.

For example, pretend your project is much larger than our calc example: suppose it contains a number of
subdirectories and many more files. In the course of your work, you may decide that you need to create a working
copy that is designed to have specific features and bug fixes. You can accomplish this by selectively backdating
files or directories to particular revisions (using svn update with the - r option liberally), by switching files and
directories to particular branches (making use of svn switch), or even just by making a bunch of local changes.
When you're done, your working copy is a hodgepodge of repository locations from different revisions. But after
testing, you know it's the precise combination of data you need to tag.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot
of your exact working copy arrangement and store it in the repository. Luckily, svn copy actually has four
different uses (which you can read about in Chapter 9, Subversion Complete Reference), including the ability
to copy a working copy tree to the repository:

S 1s
my-working-copy/

$ svn copy my-working-copy \
http://svn.example.com/repos/calc/tags/mytag \

-m "Tag my existing working copy state."

143

Branching and Merging

Committed revision 940.

Now there is a new directory in the repository, /calc/tags/mytag, which is an exact snapshot of your working
copy—mixed revisions, URLSs, local changes, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch
of local changes made to your working copy, and you'd like a collaborator to see them. Instead of running svn
diff and sending a patch file (which won't capture directory or symlink changes), you can use svn copy to
“upload” your working copy to a private area of the repository. Your collaborator can then either check out a
verbatim copy of your working copy or use svn merge to receive your exact changes.

While this is a nice method for uploading a quick snapshot of your working copy, note that this is not a good
way to initially create a branch. Branch creation should be an event unto itself, and this method conflates the
creation of a branch with extra changes to files, all within a single revision. This makes it very difficult (later on)
to identify a single revision number as a branch point.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags
with the same underlying mechanism (directory copies), and because branches and tags appear in normal filesys-
tem space, many people find Subversion intimidating. It's almost too flexible. In this section, we'll offer some
suggestions for arranging and managing your data over time.

Repository Layout

There are some standard, recommended ways to organize the contents of a repository. Most people create a
trunk directory to hold the “main line” of development, a branches directory to contain branch copies, and a
tags directory to contain tag copies. If a repository holds only one project, often people create these top-level
directories:

/
trunk/

branches/
tags/

If a repository contains multiple projects, admins typically index their layout by project. See the section called
“Planning Your Repository Organization” to read more about “project roots”, but here's an example of such a
layout:

/

paint/
trunk/
branches/
tags/

cale/
trunk/
branches/

144

Branching and Merging

tags/

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best
for you or your team. Remember that whatever you choose, it's not a permanent commitment. You can reorganize
your repository at any time. Because branches and tags are ordinary directories, the svn move command can
move or rename them however you wish. Switching from one layout to another is just a matter of issuing a series
of server-side moves; if you don't like the way things are organized in the repository, just juggle the directories

around.

Remember, though, that while moving directories is easy to do, you need to be considerate of other users as
well. Your juggling can disorient users with existing working copies. If a user has a working copy of a particular
repository directory and your svn move subcommand removes the path from the latest revision, then when the
user next runs svn update, she is told that her working copy represents a path that no longer exists. She is then
forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like any other
versioned item. For example, suppose you eventually finish all your work on your personal branch of the calc
project. After merging all of your changes back into /calc/trunk, there's no need for your private branch
directory to stick around anymore:

$ svn delete http://svn.example.com/repos/calc/branches/my-calc-branch \

-m "Removing obsolete branch of calc project."

Committed revision 375.

And now your branch is gone. Of course, it's not really gone: the directory is simply missing from the HEAD
revision, no longer distracting anyone. If you use svn checkout, svn switch, or svn list to examine an earlier
revision, you can still see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very easy in
Subversion. If there's a deleted directory (or file) that you'd like to bring back into HEAD, simply use svn copy
to copy it from the old revision:

$ svn copy http://svn.example.com/repos/calc/branches/my-calc-branch@374 \
http://svn.example.com/repos/calc/branches/my-calc-branch \

-m "Restore my-calc-branch."

Committed revision 376.

In our example, your personal branch had a relatively short lifetime: you may have created it to fix a bug or
implement a new feature. When your task is done, so is the branch. In software development, though, it's also
common to have two “main” branches running side by side for very long periods. For example, suppose it's time
to release a stable version of the calc project to the public, and you know it's going to take a couple of months
to shake bugs out of the software. You don't want people to add new features to the project, but you don't want
to tell all developers to stop programming either. So instead, you create a “stable” branch of the software that
won't change much:

$ svn copy http://svn.example.com/repos/calc/trunk \

145

Branching and Merging

http://svn.example.com/repos/calc/branches/stable-1.0 \

-m "Creating stable branch of calc project."

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /calc/trunk, and
you can declare a project policy that only bug fixes are to be committed to /calc/branches/stable-1.0.
That is, as people continue to work on the trunk, a human selectively ports bug fixes over to the stable branch.
Even after the stable branch has shipped, you'll probably continue to maintain the branch for a long time—that
is, as long as you continue to support that release for customers. We'll discuss this more in the next section.

Common Branching Patterns

There are many different uses for branching and svn merge, and this section describes the most common.

Version control is most often used for software development, so here's a quick peek at two of the most common
branching/merging patterns used by teams of programmers. If you're not using Subversion for software devel-
opment, feel free to skip this section. If you're a software developer using version control for the first time, pay
close attention, as these patterns are often considered best practices by experienced folk. These processes aren't
specific to Subversion; they're applicable to any version control system. Still, it may help to see them described
in Subversion terms.

Release Branches

Most software has a typical life cycle: code, test, release, repeat. There are two problems with this process. First,
developers need to keep writing new features while quality assurance teams take time to test supposedly stable
versions of the software. New work cannot halt while the software is tested. Second, the team almost always
needs to support older, released versions of software; if a bug is discovered in the latest code, it most likely exists
in released versions as well, and customers will want to get that bug fix without having to wait for a major new
release.

Here's where version control can help. The typical procedure looks like this:

1. Developers commit all new work to the trunk. Day-to-day changes are committed to /trunk: new features,
bug fixes, and so on.

2. The trunk is copied to a “release” branch. When the team thinks the software is ready for release (say, a 1.0
release), /trunk might be copied to /branches/1.0.

3. Teams continue to work in parallel. One team begins rigorous testing of the release branch, while another
team continues new work (say, for version 2.0) on /trunk. If bugs are discovered in either location, fixes are
ported back and forth as necessary. At some point, however, even that process stops. The branch is “frozen”
for final testing right before a release.

4. The branch is tagged and released. When testing is complete, /branches/1.0 is copied to /tags/1.0.0
as a reference snapshot. The tag is packaged and released to customers.

5. The branch is maintained over time. While work continues on /trunk for version 2.0, bug fixes continue
to be ported from /trunk to /branches/1.0. When enough bug fixes have accumulated, management
may decide to do a 1.0.1 release: /branches/1.0 is copied to /tags/1.0.1, and the tag is packaged and
released.

146

Branching and Merging

This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0 release branch
is created, tested, tagged, and eventually released. After some years, the repository ends up with a number of
release branches in “maintenance” mode, and a number of tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter (the one you've been
working on while Sally continues to work on /trunk). It's a temporary branch created to work on a complex
change without interfering with the stability of / t runk. Unlike release branches (which may need to be support-
ed forever), feature branches are born, used for a while, merged back to the trunk, and then ultimately deleted.
They have a finite span of usefulness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature branch. Some
projects never use feature branches at all: commits to /trunk are a free-for-all. The advantage to this system
is that it's simple—nobody needs to learn about branching or merging. The disadvantage is that the trunk code
is often unstable or unusable. Other projects use branches to an extreme: no change is ever committed to the
trunk directly. Even the most trivial changes are created on a short-lived branch, carefully reviewed, and merged
to the trunk. Then the branch is deleted. This system guarantees an exceptionally stable and usable trunk at all
times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that /t runk compile and pass regres-
sion tests at all times. A feature branch is required only when a change requires a large number of destabilizing
commits. A good rule of thumb is to ask this question: if the developer worked for days in isolation and then
committed the large change all at once (so that /t runk were never destabilized), would it be too large a change
to review? If the answer to that question is “yes,” the change should be developed on a feature branch. As the
developer commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep a feature branch in “sync” with the trunk as work progresses. As we
mentioned earlier, there's a great risk to working on a branch for weeks or months; trunk changes may continue
to pour in, to the point where the two lines of development differ so greatly that it may become a nightmare
trying to merge the branch back to the trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a policy: once a week,
merge the last week's worth of trunk changes to the branch.

When you are eventually ready to merge the “synchronized” feature branch back to the trunk, begin by doing a
final merge of the latest trunk changes to the branch. When that's done, the latest versions of branch and trunk
are absolutely identical except for your branch changes. You then merge back with the --reintegrate option:

$ cd trunk-working-copy
$ svn update

Updating '.':

At revision 1910.

$ svn merge --reintegrate "/calc/branches/mybranch

--- Merging differences between repository URLs into '.':

U real.c
U integer.c
A newdirectory

147

Branching and Merging

A newdirectory/newfile

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to running
svn update in a working copy, while the final merge step is analogous to running svn commit from a working
copy. After all, what else is a working copy but a very shallow private branch? It's a branch that's capable of
storing only one change at a time.

Vendor Branches

As is especially the case when developing software, the data that you maintain under version control is often
closely related to, or perhaps dependent upon, someone else's data. Generally, the needs of your project will
dictate that you stay as up to date as possible with the data provided by that external entity without sacrificing the
stability of your own project. This scenario plays itself out all the time—anywhere that the information generated
by one group of people has a direct effect on that which is generated by another group.

For example, software developers might be working on an application that makes use of a third-party library.
Subversion has just such a relationship with the Apache Portable Runtime (APR) library (see the section called
“The Apache Portable Runtime Library”). The Subversion source code depends on the APR library for all its
portability needs. In earlier stages of Subversion's development, the project closely tracked APR's changing API,
always sticking to the “bleeding edge” of the library's code churn. Now that both APR and Subversion have
matured, Subversion attempts to synchronize with APR's library API only at well-tested, stable release points.

Now, if your project depends on someone else's information, you could attempt to synchronize that information
with your own in several ways. Most painfully, you could issue oral or written instructions to all the contributors
of your project, telling them to make sure they have the specific versions of that third-party information that
your project needs. If the third-party information is maintained in a Subversion repository, you could also use
Subversion's externals definitions to effectively “pin down” specific versions of that information to some location
in your own working copy (see the section called “Externals Definitions”).

But sometimes you want to maintain custom modifications to third-party code in your own version control sys-
tem. Returning to the software development example, programmers might need to make modifications to that
third-party library for their own purposes. These modifications might include new functionality or bug fixes,
maintained internally only until they become part of an official release of the third-party library. Or the changes
might never be relayed back to the library maintainers, existing solely as custom tweaks to make the library
further suit the needs of the software developers.

Now you face an interesting situation. Your project could house its custom modifications to the third-party data
in some disjointed fashion, such as using patch files or full-fledged alternative versions of files and directories.
But these quickly become maintenance headaches, requiring some mechanism by which to apply your custom
changes to the third-party code and necessitating regeneration of those changes with each successive version of
the third-party code that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own version
control system that contains information provided by a third-party entity, or vendor. Each version of the vendor's
data that you decide to absorb into your project is called a vendor drop.

Vendor branches provide two benefits. First, by storing the currently supported vendor drop in your own ver-
sion control system, you ensure that the members of your project never need to question whether they have the
right version of the vendor's data. They simply receive that correct version as part of their regular working copy

148

Branching and Merging

updates. Second, because the data lives in your own Subversion repository, you can store your custom changes
to it in-place—you have no more need of an automated (or worse, manual) method for swapping in your cus-
tomizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this: first, you create a top-level directory (such as /vendor) to
hold the vendor branches. Then you import the third-party code into a subdirectory of that top-level directory.
You then copy that subdirectory into your main development branch (e.g., / t runk) at the appropriate location.
You always make your local changes in the main development branch. With each new release of the code you are
tracking, you bring it into the vendor branch and merge the changes into /t runk, resolving whatever conflicts
occur between your local changes and the upstream changes.

An example will help to clarify this algorithm. We'll use a scenario where your development team is creating a
calculator program that links against a third-party complex number arithmetic library, libcomplex. We'll begin
with the initial creation of the vendor branch and the import of the first vendor drop. We'll call our vendor branch
directory 1ibcomplex, and our code drops will go into a subdirectory of our vendor branch called current.
And since svn import creates all the intermediate parent directories it needs, we can actually accomplish both
of these steps with a single command:

$ svn import /path/to/libcomplex-1.0 \
http://svn.example.com/repos/vendor/libcomplex/current \

-m "importing initial 1.0 vendor drop"

We now have the current version of the libcomplex source code in /vendor/libcomplex/current. Now, we
tag that version (see the section called “Tags”) and then copy it into the main development branch. Our copy will
create a new directory called 1ibcomplex in our existing calc project directory. It is in this copied version of
the vendor data that we will make our customizations:

$ svn copy http://svn.example.com/repos/vendor/libcomplex/current \
http://svn.example.com/repos/vendor/libcomplex/1.0 \
-m "tagging libcomplex-1.0"

$ svn copy http://svn.example.com/repos/vendor/libcomplex/1.0 \
http://svn.example.com/repos/calc/libcomplex \

-m "bringing libcomplex-1.0 into the main branch"

We check out our project's main branch—which now includes a copy of the first vendor drop—and we get to
work customizing the libcomplex code. Before we know it, our modified version of libcomplex is now completely
integrated into our calculator program."

A fewweeks later, the developers of libcomplex release a new version of their library—version 1.1—which contains
some features and functionality that we really want. We'd like to upgrade to this new version, but without losing
the customizations we made to the existing version. What we essentially would like to do is to replace our current
baseline version of libcomplex 1.0 with a copy of libcomplex 1.1, and then re-apply the custom modifications

“And is entirely bug-free, of course!

149

Branching and Merging

we previously made to that library to the new version. But we actually approach the problem from the other
direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our modified copy of it.

To perform this upgrade, we check out a copy of our vendor branch and replace the code in the current direc-
tory with the new libcomplex 1.1 source code. We quite literally copy new files on top of existing files, perhaps
exploding the libcomplex 1.1 release tarball atop our existing files and directories. The goal here is to make our
current directory contain only the libcomplex 1.1 code and to ensure that all that code is under version control.
Oh, and we want to do this with as little version control history disturbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications as well as, perhaps,
some unversioned files. If we did what we were supposed to do, the unversioned files are only those new files
introduced in the 1.1 release of libcomplex—we run svn add on those to get them under version control. If the
1.1 code no longer has certain files that were in the 1.0 tree, it may be hard to notice them; you'd have to compare
the two trees with some external tool and then svn delete any files present in 1.0 but not in 1.1. (Although it
might also be just fine to let these same files live on in unused obscurity!) Finally, once our current working
copy contains only the libcomplex 1.1 code, we commit the changes we made to get it looking that way.

Our current branch now contains the new vendor drop. We tag the new version as 1.1 (in the same way we
previously tagged the version 1.0 vendor drop), and then merge the differences between the tag of the previous
version and the new current version into our main development branch:

$ cd working-copies/calc

$ svn merge ~/vendor/libcomplex/1.0 \
~/vendor/libcomplex/current \
libcomplex

.. # resolve all the conflicts between their changes and our changes

$ svn commit -m "merging libcomplex-1.1 into the main branch"

In the trivial use case, the new version of our third-party tool would look, from a files-and-directories point of
view, just like the previous version. None of the libcomplex source files would have been deleted, renamed, or
moved to different locations—the new version would contain only textual modifications against the previous
one. In a perfect world, our modifications would apply cleanly to the new version of the library, with absolutely
no complications or conflicts.

But things aren't always that simple, and in fact it is quite common for source files to get moved around between
releases of software. This complicates the process of ensuring that our modifications are still valid for the new
version of code, and things can quickly degrade into a situation where we have to manually re-create our cus-
tomizations in the new version. Once Subversion knows about the history of a given source file—including all its
previous locations—the process of merging in the new version of the library is pretty simple. But we are respon-
sible for telling Subversion how the source file layout changed from vendor drop to vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions, and moves complicate the process of upgrad-
ing to each successive version of the third-party data. So Subversion supplies the svn_load_ dirs.pl script
to assist with this process. This script automates the importing steps we mentioned in the general vendor
branch management procedure to make sure mistakes are minimized. You will still be responsible for using the
merge commands to merge the new versions of the third-party data into your main development branch, but
svn_load_ dirs.pl can help you more quickly and easily arrive at that stage.

150

Branching and Merging

In short, svn_load_ dirs.pl is an enhancement to svn import that has several important characteristics:

+ It can be run at any point in time to bring an existing directory in the repository to exactly match an external
directory, performing all the necessary adds and deletes, and optionally performing moves, too.

« Ittakes care of complicated series of operations between which Subversion requires an intermediate commit—
such as before renaming a file or directory twice.

« It will optionally tag the newly imported directory.
« It will optionally add arbitrary properties to files and directories that match a regular expression.

svn_load_ dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subversion
directory to work in. This argument is followed by the URL—relative to the first argument—into which the current
vendor drop will be imported. Finally, the third argument is the local directory to import. Using our previous
example, a typical run of svn_load_ dirs.pl might look like this:

$ svn load dirs.pl http://svn.example.com/repos/vendor/libcomplex \
current \

/path/to/libcomplex-1.1

You can indicate that you'd like svn_load_ dirs.pl to tag the new vendor drop by passing the -t command-line
option and specifying a tag name. This tag is another URL relative to the first program argument.

$ svn load dirs.pl -t libcomplex-1.1 \
http://svn.example.com/repos/vendor/libcomplex \
current \

/path/to/libcomplex-1.1

When you run svn_load_ dirs.pl, it examines the contents of your existing “current” vendor drop and com-
pares them with the proposed new vendor drop. In the trivial case, no files will be in one version and not the
other, and the script will perform the new import without incident. If, however, there are discrepancies in the file
layouts between versions, svn_load_ dirs.pl will ask you how to resolve those differences. For example, you
will have the opportunity to tell the script that you know that the file math. c in version 1.0 of libcomplex was
renamed to arithmetic.c in libcomplex 1.1. Any discrepancies not explained by moves are treated as regular
additions and deletions.

The script also accepts a separate configuration file for setting properties on added files and directories which
match a regular expression. This configuration file is specified to svn_load_ dirs.pl using the -p command-line
option. Each line of the configuration file is a whitespace-delimited set of two or four values: a Perl-style regular
expression against which to match the added path, a control keyword (either break or cont), and then option-
ally a property name and value.

\ .png$ break svn:mime-type image/png
\.Jjpe?g$ break svn:mime-type image/jpeg
\.m3u$ cont svn:mime-type audio/x-mpegurl
\.m3u$ break svn:eol-style LF

o™ break svn:eol-style native

151

Branching and Merging

For each added path, the configured property changes whose regular expression matches the path are applied in
order, unless the control specification is break (which means that no more property changes should be applied
to that path). If the control specification is cont—an abbreviation for cont inue—matching will continue with
the next line of the configuration file.

Any whitespace in the regular expression, property name, or property value must be surrounded by either single
or double quotes. You can escape quotes that are not used for wrapping whitespace by preceding them with a
backslash (\) character. The backslash escapes only quotes when parsing the configuration file, so do not protect
any other characters beyond what is necessary for the regular expression.

To Branch or Not to Branch?

To branch or not to branch—that is an interesting question. This chapter has provided thus far a pretty deep dive
into the waters of branching and merging, topics which have historically been the premier source of Subversion
user confusion. As if the rote actions involved in branching and branch management aren't sometimes tricky
enough, some users get hung up on deciding whether they need to branch at all. As you've learned, Subversion
can handle common branching and branch management scenarios. So, the decision of whether or not to branch
a project's history is rarely a technical one. Rather, the social impact of the decision often carries more weight.
Let's examine some of the benefits and costs of using branches in a software project.

The most obvious benefit of working on a branch is isolation. Changes made to the branch don't affect the other
lines of development in the project; changes made to those other lines don't affect the branch. In this way, a
branch can serve as a great place to experiment with new features, complex bug fixes, major code rewrites, and
so on. No matter how much stuff Sally breaks on her branch, Harry and the rest of the team can continue with
their work unhindered outside the branch.

Branches also provide a great way to organize related changes into readily identifiable collections. For example,
the changes which comprise the complete solution to a particular bug might be a list of non-sequential revision
numbers. You might describe them in human language as “revisions 1534, 1543, 1587 and 1588”. You'd proba-
bly reproduce those numbers manually (or otherwise) in the issue tracker artifact which tracks the bug. When
porting the bug fix to other product versions, you'd need to make sure to port all those revisions. But had those
changes been made on a unique branch, you'd find yourself referring only to that branch by its name in conver-
sation, in issue tracker comments, and when porting changes.

The unfortunate downside of branches, though, is that the very isolation that makes them so useful can be at odds
with the collaborative needs of the project team. Depending on the work habits of your project peers, changes
made to branches might not get the kind of constructive review, criticism, and testing that changes made to
the main line of development do. The isolation of a branch can encourage users to forsake certain version con-
trol “best practices”, leading to version history which is difficult to review post facto. Developers on long-lived
branches sometimes need to work extra hard to ensure that the evolutionary direction of their isolated copy of
the codebase is in harmony with the direction their peers are steering the main code lines. Now, these drawbacks
might be less of an issue for true exploratory branches aimed at experimenting with the future of a codebase
with no expectation of reintegrating the results back into the main development lines—mere policy needn't be
a vision-killer! But the simple fact remains that projects generally benefit from an orderly approach to version
control where code and code changes enjoy the review and comprehension of more than one team member.

That's not to say that there are no technical penalties to branching. Pardon us while we “go meta” for a bit here. If
you think about it, every time you checkout a Subversion working copy, you're creating a branch of sorts of your
project. It's a special sort of branch. It lives only on your client machine; not in the repository. You synchronize
this branch with changes made in the repository using svn update—which acts almost like a special-cased,

152

Branching and Merging

simplified form of an svn merge command.'® You effectively reintegrate your branch each time you run svn
commit. So, in that special sense, Subversion users deal with branches and merges all the time. Given the sim-
ilarities between updating and merging, it's no surprise, then, that the areas in which Subversion seems to have
the most shortcomings—namely, handling file and directory renames and dealing with tree conflicts in general—
are problematic for both the svn update and svn merge operations. Unfortunately, svn merge has a harder
time of it precisely because of the fact that, for every way in which svn update is a special-cased, simplified kind
of generic merge operation, a true Subversion merge is neither special-cased nor simplified. For this reason,
merges perform much more slowly than updates, require explicit tracking (via the svn:mergeinfo property
we've discussed in this chapter) and history-crunching arithmetic, and generally offer more opportunities for
something to go awry.

To branch or not to branch? Ultimately, that depends on what your team needs in order to find that sweet balance
of collaboration and isolation.

Summary

We covered a lot of ground in this chapter. We discussed the concepts of tags and branches and demonstrated
how Subversion implements these concepts by copying directories with the svn copy command. We showed
how to use svn merge to copy changes from one branch to another or roll back bad changes. We went over the
use of svn switch to create mixed-location working copies. And we talked about how one might manage the
organization and lifetimes of branches in a repository.

Remember the Subversion mantra: branches and tags are cheap. So don't be afraid to use them when needed!

As a helpful reminder of all the operations we discussed, here is handy reference table you can consult as you
begin to make use of branches.

Table 4.1. Branching and merging commands

Action Command

Create a branch or tag svn copy URL1 URL2

Switch a working copy to a branch or tag svn switch URL

Synchronize a branch with trunk svn merge trunkURL; svn commit

See merge history or eligible changesets svn mergeinfo SOURCE TARGET

Merge a branch back into trunk svn merge --reintegrate branchURL; svn
commit

Merge one specific change svn merge -c REV URL; svn commit

Merge a range of changes svn merge -r REV1:REV2 URL; svn commit

Block a change from automatic merging svn merge -c REV --record-only URL; svn
commit

Preview a merge svn merge URL --dry-run

®Actually, you could use svn merge -rLAST UPDATED REV:HEAD . inyour working copy to quite literally merge in all the repository changes
since your last update if really wanted to!

153

Branching and Merging

Action

Command

Abandon merge results

svn

revert -R .

Resurrect something from history

svn

copy URLQRREV localPATH

Undo a committed change

svn

merge -c -REV URL; svn commit

Examine merge-sensitive history

svn

log -g; svn blame -g

Create a tag from a working copy

svn

copy . tagURL

Rearrange a branch or tag

svn

move URL1 URL2

Remove a branch or tag

svn

delete URL

154

Chapter 5. Repository
Administration

The Subversion repository is the central storehouse of all your versioned data. As such, it becomes an obvious
candidate for all the love and attention an administrator can offer. While the repository is generally a low-main-
tenance item, it is important to understand how to properly configure and care for it so that potential problems
are avoided, and so actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll also talk about repository
maintenance, providing examples of how and when to use various related tools provided with Subversion. We'll
address some common questions and mistakes and give some suggestions on how to arrange the data in the
repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version control (i.e., via
a Subversion client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion
repository administrator," this chapter is for you.

The Subversion Repository, Defined

Before jumping into the broader topic of repository administration, let's further define what a repository is. How
does it look? How does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As an administrator,
you'll be expected to understand the composition of a repository both from a literal, OS-level perspective—how
a repository looks and acts with respect to non-Subversion tools—and from a logical perspective—dealing with
how data is represented inside the repository.

Seen through the eyes of a typical file browser application (such as Windows Explorer) or command-line based
filesystem navigation tools, the Subversion repository is just another directory full of stuff. There are some subdi-
rectories with human-readable configuration files in them, some subdirectories with some not-so-human-read-
able data files, and so on. As in other areas of the Subversion design, modularity is given high regard, and hier-
archical organization is preferred to cluttered chaos. So a shallow glance into a typical repository from a nuts-
and-bolts perspective is sufficient to reveal the basic components of the repository:

$ 1ls repos
conf/ db/ format hooks/ locks/ README.txt

Here's a quick fly-by overview of what exactly you're seeing in this directory listing. (Don't get bogged down in
the terminology—detailed coverage of these components exists elsewhere in this and other chapters.)

conf/
This directory is a container for configuration files.

db/
This directory contains the data store for all of your versioned data.?

"This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working
copy where everyone's data hangs out.

>Strictly speaking, Subversion doesn't dictate that the versioned data live here, and there are known (albeit proprietary) alternative backend storage
implementations which do not, in fact, store data in this directory.

155

Repository Administration

format
This file describes the repository's internal organizational scheme. (As it turns out, the db/ subdirectory
sometimes also contains a format file which describes only the contents of that subdirectory and which is
not to be confused with this file.)

hooks/
This directory contains hook script templates and hook scripts, if any have been installed.

locks/
Subversion uses this directory to house repository lock files, used for managing concurrent access to the
repository.

README.txt
This is a brief text file containing merely a notice to readers that the directory they are looking in is a Sub-
version repository.

Prior to Subversion 1.5, the on-disk repository structure also always contained a dav subdi-
<> rectory. mod dav_svn used this directory to store information about WebDAV activities—
mappings of high-level WebDAV protocol concepts to Subversion commit transactions. Sub-
version 1.5 changed that behavior, moving ownership of the activities directory, and the ability
to configure its location, into mod_dav_svn itself. Now, new repositories will not necessarily
have a dav subdirectory unless mod dav_svn is in use and hasn't been configured to store
its activities database elsewhere. See the section called “Directives” in Chapter 9, Subversion

Complete Reference for more information.

Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection of files and direc-
tories suddenly becomes an implementation of a virtual, versioned filesystem, complete with customizable event
triggers. This filesystem has its own notions of directories and files, very similar to the notions of such things held
by real filesystems (such as NTFS, FAT32, ext3, etc.). But this is a special filesystem—it hangs these directories
and files from revisions, keeping all the changes you've ever made to them safely stored and forever accessible.
This is where the entirety of your versioned data lives.

Strategies for Repository Deployment

Due largely to the simplicity of the overall design of the Subversion repository and the technologies on which
it relies, creating and configuring a repository are fairly straightforward tasks. There are a few preliminary de-
cisions you'll want to make, but the actual work involved in any given setup of a Subversion repository is pretty
basic, tending toward mindless repetition if you find yourself setting up multiples of these things.

Some things you'll want to consider beforehand, though, are:
« What data do you expect to live in your repository (or repositories), and how will that data be organized?
+ Where will your repository live, and how will it be accessed?

« What types of access control and repository event reporting do you need?

Which of the available types of data store do you want to use?

In this section, we'll try to help you answer those questions.

156

Repository Administration

Planning Your Repository Organization

While Subversion allows you to move around versioned files and directories without any loss of information,
and even provides ways of moving whole sets of versioned history from one repository to another, doing so can
greatly disrupt the workflow of those who access the repository often and come to expect things to be at certain
locations. So before creating a new repository, try to peer into the future a bit; plan ahead before placing your
data under version control. By conscientiously “laying out” your repository or repositories and their versioned
contents ahead of time, you can prevent many future headaches.

Let's assume that as repository administrator, you will be responsible for supporting the version control system
for several projects. Your first decision is whether to use a single repository for multiple projects, or to give each
project its own repository, or some compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated main-
tenance. A single repository means that there is one set of hook programs, one thing to routinely back up, one
thing to dump and load if Subversion releases an incompatible new version, and so on. Also, you can move data
between projects easily, without losing any historical versioning information.

The downside of using a single repository is that different projects may have different requirements in terms
of the repository event triggers, such as needing to send commit notification emails to different mailing lists,
or having different definitions about what does and does not constitute a legitimate commit. These aren't in-
surmountable problems, of course—it just means that all of your hook scripts have to be sensitive to the layout
of your repository rather than assuming that the whole repository is associated with a single group of people.
Also, remember that Subversion uses repository-global revision numbers. While those numbers don't have any
particular magical powers, some folks still don't like the fact that even though no changes have been made to
their project lately, the youngest revision number for the repository keeps climbing because other projects are
actively adding new revisions.>

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to
each other. You might have a few repositories with a handful of projects in each repository. That way, projects
that are likely to want to share data can do so easily, and as new revisions are added to the repository, at least
the developers know that those new revisions are at least remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think about
directory hierarchies within the repositories themselves. Because Subversion uses regular directory copies for
branching and tagging (see Chapter 4, Branching and Merging), the Subversion community recommends that
you choose a repository location for each project root—the “topmost” directory that contains data related to that
project—and then create three subdirectories beneath that root: t runk, meaning the directory under which the
main project development occurs; branches, which is a directory in which to create various named branches
of the main development line; and tags, which is a collection of tree snapshots that are created, and perhaps
destroyed, but never changed.*

For example, your repository might look like this:

/

calc/
trunk/

3Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development metrics, global revision
numbers are a silly thing to fear, and not the kind of thing you should weigh when deciding how to arrange your projects and repositories.
4The trunk, tags, and branches trio is sometimes referred to as “the TTB directories.”

157

Repository Administration

tags/
branches/
calendar/
trunk/
tags/
branches/
spreadsheet/
trunk/
tags/
branches/

Note that it doesn't matter where in your repository each project root is. If you have only one project per repos-
itory, the logical place to put each project root is at the root of that project's respective repository. If you have
multiple projects, you might want to arrange them in groups inside the repository, perhaps putting projects with
similar goals or shared code in the same subdirectory, or maybe just grouping them alphabetically. Such an
arrangement might look like this:

/
utils/

calc/
trunk/
tags/
branches/

calendar/
trunk/
tags/
branches/

office/
spreadsheet/
trunk/
tags/
branches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a particular layout—
in its eyes, a directory is a directory is a directory. Ultimately, you should choose the repository arrangement
that meets the needs of the people who work on the projects that live there.

In the name of full disclosure, though, we'll mention another very common layout. In this layout, the trunk,
tags, and branches directories live in the root directory of your repository, and your projects are in subdirec-
tories beneath those, like so:

/

trunk/
cale/
calendar/

158

Repository Administration

spreadsheet/
tags/
cale/

calendar/
spreadsheet/

branches/
cale/
calendar/
spreadsheet/

There's nothing particularly incorrect about such a layout, but it may or may not seem as intuitive for your
users. Especially in large, multiproject situations with many users, those users may tend to be familiar with only
one or two of the projects in the repository. But the projects-as-branch-siblings approach tends to deemphasize
project individuality and focus on the entire set of projects as a single entity. That's a social issue, though. We
like our originally suggested arrangement for purely practical reasons—it's easier to ask about (or modify, or
migrate elsewhere) the entire history of a single project when there's a single repository path that holds the entire
history—past, present, tagged, and branched—for that project and that project alone.

Deciding Where and How to Host Your Repository

Before creating your Subversion repository, an obvious question you'll need to answer is where the thing is
going to live. This is strongly connected to myriad other questions involving how the repository will be accessed
(via a Subversion server or directly), by whom (users behind your corporate firewall or the whole world out on
the open Internet), what other services you'll be providing around Subversion (repository browsing interfaces,
email-based commit notification, etc.), your data backup strategy, and so on.

We cover server choice and configuration in Chapter 6, Server Configuration, but the point we'd like to briefly
make here is simply that the answers to some of these other questions might have implications that force your
hand when deciding where your repository will live. For example, certain deployment scenarios might require
accessing the repository via a remote filesystem from multiple computers, in which case (as you'll read in the
next section) your choice of a repository backend data store turns out not to be a choice at all because only one
of the available backends will work in this scenario.

Addressing each possible way to deploy Subversion is both impossible and outside the scope of this book. We
simply encourage you to evaluate your options using these pages and other sources as your reference material
and to plan ahead.

Choosing a Data Store

Subversion provides two options for the type of underlying data store—often referred to as “the backend” or,
somewhat confusingly, “the (versioned) filesystem”—that each repository uses. One type of data store keeps
everything in a Berkeley DB (or BDB) database environment; repositories that use this type are often referred
to as being “BDB-backed.” The other type stores data in ordinary flat files, using a custom format. Subversion
developers have adopted the habit of referring to this latter data storage mechanism as FSFS°—a versioned

50ften pronounced “fuzz-fuzz,” if Jack Repenning has anything to say about it. (This book, however, assumes that the reader is thinking “eff-ess-
eff-ess.”)

159

Repository Administration

filesystem implementation that uses the native OS filesystem directly—rather than via a database library or some

other abstraction layer—to store data.

Table 5.1, “Repository data store comparison” gives a comparative overview of Berkeley DB and FSFS reposito-

ries.

Table 5.1. Repository data store comparison

Category Feature Berkeley DB FSFS
Reliability Data integrity When properly deployed, | Older versions had some
extremely reliable; Berke- | rarely demonstrated, but
ley DB 4.4 brings auto-re- | data-destroying bugs
covery
Sensitivity to interrup- | Very; crashes and permis- | Quite insensitive
tions sion problems can leave
the database “wedged,”
requiring journaled re-
covery procedures
Accessibility Usable from a read-only | No Yes
mount
Platform-independent No Yes
storage
Usable over network | Generally, no Yes
filesystems
Group permissions han- | Sensitive to user umask | Works around umask
dling problems; best if accessed | problems
by only one user
Scalability Repository disk usage Larger (especially if log- | Smaller
files aren't purged)
Number of revision trees | Database; no problems Some older native filesys-
tems don't scale well with
thousands of entries in a
single directory
Directories with many | Slower Faster
files
Performance Checking out latest revi- | No meaningful difference | No meaningful difference
sion
Large commits Slower overall, but cost is | Faster overall, but final-
amortized across the life- | ization delay may cause
time of the commit client timeouts

There are advantages and disadvantages to each of these two backend types. Neither of them is more “official”
than the other, though the newer FSFS is the default data store as of Subversion 1.2. Both are reliable enough

160

Repository Administration

to trust with your versioned data. But as you can see in Table 5.1, “Repository data store comparison”, the FSFS
backend provides quite a bit more flexibility in terms of its supported deployment scenarios. More flexibility
means you have to work a little harder to find ways to deploy it incorrectly. Those reasons—plus the fact that
not using Berkeley DB means there's one fewer component in the system—Ilargely explain why today almost
everyone uses the FSFS backend when creating new repositories.

Fortunately, most programs that access Subversion repositories are blissfully ignorant of which backend data
store is in use. And you aren't even necessarily stuck with your first choice of a data store—in the event that you
change your mind later, Subversion provides ways of migrating your repository's data into another repository
that uses a different backend data store. We talk more about that later in this chapter.

The following subsections provide a more detailed look at the available backend data store types.

Berkeley DB

When the initial design phase of Subversion was in progress, the developers decided to use Berkeley DB for a
variety of reasons, including its open source license, transaction support, reliability, performance, API simplicity,
thread safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes accessing
your Subversion repositories don't have to worry about accidentally clobbering each other's data. The isolation
provided by the transaction system is such that for any given operation, the Subversion repository code sees
a static view of the database—not a database that is constantly changing at the hand of some other process—
and can make decisions based on that view. If the decision made happens to conflict with what another process
is doing, the entire operation is rolled back as though it never happened, and Subversion gracefully retries the
operation against a new, updated (and yet still static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to back up the database environment without
taking it “offline.” We'll discuss how to back up your repository later in this chapter (in the section called “Repos-
itory Backup”), but the benefits of being able to make fully functional copies of your repositories without any
downtime should be obvious.

Berkeley DB is also a very reliable database system when properly used. Subversion uses Berkeley DB's logging
facilities, which means that the database first writes to on-disk logfiles a description of any modifications it is
about to make, and then makes the modification itself. This is to ensure that if anything goes wrong, the database
system can back up to a previous checkpoint—a location in the logfiles known not to be corrupt—and replay
transactions until the data is restored to a usable state. See the section called “Managing Disk Space” later in
this chapter for more about Berkeley DB logfiles.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berkeley DB
environments are not portable. You cannot simply copy a Subversion repository that was created on a Unix sys-
tem onto a Windows system and expect it to work. While much of the Berkeley DB database format is archi-
tecture-independent, other aspects of the environment are not. Second, Subversion uses Berkeley DB in a way
that will not operate on Windows 95/98 systems—if you need to house a BDB-backed repository on a Windows
machine, stick with Windows 2000 or later.

While Berkeley DB promises to behave correctly on network shares that meet a particular set of specifications,®

most networked filesystem types and appliances do not actually meet those requirements. And in no case can you

6'Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly, the ability to map files
directly into process memory.

161

Repository Administration

allow a BDB-backed repository that resides on a network share to be accessed by multiple clients of that share
at once (which quite often is the whole point of having the repository live on a network share in the first place).

If you attempt to use Berkeley DB on a noncompliant remote filesystem, the results are unpre-
° dictable—you may see mysterious errors right away, or it may be months before you discover

that your repository database is subtly corrupted. You should strongly consider using the FSFS
data store for repositories that need to live on a network share.

Finally, because Berkeley DB is a library linked directly into Subversion, it's more sensitive to interruptions than
a typical relational database system. Most SQL systems, for example, have a dedicated server process that me-
diates all access to tables. If a program accessing the database crashes for some reason, the database daemon
notices the lost connection and cleans up any mess left behind. And because the database daemon is the only
process accessing the tables, applications don't need to worry about permission conflicts. These things are not
the case with Berkeley DB, however. Subversion (and programs using Subversion libraries) access the database
tables directly, which means that a program crash can leave the database in a temporarily inconsistent, inacces-
sible state. When this happens, an administrator needs to ask Berkeley DB to restore to a checkpoint, which is a
bit of an annoyance. Other things can cause a repository to “wedge” besides crashed processes, such as programs
conflicting over ownership and permissions on the database files.

Berkeley DB 4.4 brings (to Subversion 1.4 and later) the ability for Subversion to automati-
0/ cally and transparently recover Berkeley DB environments in need of such recovery. When a
Subversion process attaches to a repository's Berkeley DB environment, it uses some process
accounting mechanisms to detect any unclean disconnections by previous processes, performs
any necessary recovery, and then continues on as though nothing happened. This doesn't com-
pletely eliminate instances of repository wedging, but it does drastically reduce the amount of

human interaction required to recover from them.

So while a Berkeley DB repository is quite fast and scalable, it's best used by a single server process running as
one user—such as Apache's httpd or svnserve (see Chapter 6, Server Configuration)—rather than accessing
it as many different users via file:// or svn+ssh:// URLs. If you're accessing a Berkeley DB repository
directly as multiple users, be sure to read the section called “Supporting Multiple Repository Access Methods”
later in this chapter.

FSFS

In mid-2004, a second type of repository storage system—one that doesn't use a database at all—came into be-
ing. An FSFS repository stores the changes associated with a revision in a single file, and so all of a repository's
revisions can be found in a single subdirectory full of numbered files. Transactions are created in separate sub-
directories as individual files. When complete, the transaction file is renamed and moved into the revisions di-
rectory, thus guaranteeing that commits are atomic. And because a revision file is permanent and unchanging,
the repository also can be backed up while “hot,” just like a BDB-backed repository.

Revision files and shards

FSFS repositories contain files that describe the changes made in a single revision, and files that contain
the revision properties associated with a single revision. Repositories created in versions of Subversion
prior to 1.5 keep these files in two directories—one for each type of file. As new revisions are committed

to the repository, Subversion drops more files into these two directories—over time, the number of these

162

Repository Administration

files in each directory can grow to be quite large. This has been observed to cause performance problems
on certain network-based filesystems.

Subversion 1.5 creates FSFS-backed repositories using a slightly modified layout in which the contents of
these two directories are sharded, or scattered across several subdirectories. This can greatly reduce the
time it takes the system to locate any one of these files, and therefore increases the overall performance of
Subversion when reading from the repository.

Subversion 1.6 and later takes the sharded layout one step further, allowing administrators to optionally
pack each of their repository shards up into a single multi-revision file. This can have both performance
and disk usage benefits. See the section called “Packing FSFS filesystems” for more information.

The FSFS revision files describe a revision's directory structure, file contents, and deltas against files in other
revision trees. Unlike a Berkeley DB database, this storage format is portable across different operating systems
and isn't sensitive to CPU architecture. Because no journaling or shared-memory files are being used, the repos-
itory can be safely accessed over a network filesystem and examined in a read-only environment. The lack of
database overhead also means the overall repository size is a bit smaller.

FSFS has different performance characteristics, too. When committing a directory with a huge number of files,
FSFSis able to more quickly append directory entries. On the other hand, FSFS has a longer delay when finalizing
a commit while it performs tasks that the BDB backend amortizes across the lifetime of the commit, which could

in extreme cases cause clients to time out while waiting for a response.

The most important distinction, however, is FSFS's imperviousness to wedging when something goes wrong. If
a process using a Berkeley DB database runs into a permissions problem or suddenly crashes, the database can
be left in an unusable state until an administrator recovers it. If the same scenarios happen to a process using
an FSFS repository, the repository isn't affected at all. At worst, some transaction data is left behind.

Creating and Configuring Your Repository

Earlier in this chapter (in the section called “Strategies for Repository Deployment”), we looked at some of the
important decisions that should be made before creating and configuring your Subversion repository. Now, we
finally get to get our hands dirty! In this section, we'll see how to actually create a Subversion repository and
configure it to perform custom actions when special repository events occur.

Creating the Repository

Subversion repository creation is an incredibly simple task. The svnadmin utility that comes with Subversion
provides a subcommand (svnadmin create) for doing just that.

$ # Create a repository
$ svnadmin create /var/svn/repos

$

Assuming that the parent directory /var/svn exists and that you have sufficient permissions to modify that
directory, the previous command creates a new repository in the directory /var/svn/repos, and with the de-
fault filesystem data store (FSFS). You can explicitly choose the filesystem type using the - - fs-t ype argument,
which accepts as a parameter either £sfs or bdb.

163

Repository Administration

$ # Create an FSFS-backed repository
$ svnadmin create --fs-type fsfs /var/svn/repos

$

Create a Berkeley-DB-backed repository
$ svnadmin create --fs-type bdb /var/svn/repos

$

After running this simple command, you have a Subversion repository. Depending on how users will access this
new repository, you might need to fiddle with its filesystem permissions. But since basic system administration
is rather outside the scope of this text, we'll leave further exploration of that topic as an exercise to the reader.

The path argument to svnadmin is just a regular filesystem path and not a URL like the
oj svn client program uses when referring to repositories. Both svnadmin and svnlook are
considered server-side utilities—they are used on the machine where the repository resides to
examine or modify aspects of the repository, and are in fact unable to perform tasks across
a network. A common mistake made by Subversion newcomers is trying to pass URLs (even

“local” file:// ones) to these two programs.

Present in the db/ subdirectory of your repository is the implementation of the versioned filesystem. Your new
repository's versioned filesystem begins life at revision 0, which is defined to consist of nothing but the top-level
root (/) directory. Initially, revision 0 also has a single revision property, svn:date, set to the time at which
the repository was created.

Now that you have a repository, it's time to customize it.

While some parts of a Subversion repository—such as the configuration files and hook scripts
Q —are meant to be examined and modified manually, you shouldn't (and shouldn't need to)
tamper with the other parts of the repository “by hand.” The svnadmin tool should be suffi-
cient for any changes necessary to your repository, or you can look to third-party tools (such as
Berkeley DB's tool suite) for tweaking relevant subsections of the repository. Do not attempt
manual manipulation of your version control history by poking and prodding around in your

repository's data store files!

Implementing Repository Hooks

A hook is a program triggered by some repository event, such as the creation of a new revision or the modification
of an unversioned property. Some hooks (the so-called “pre hooks”) run in advance of a repository operation and
provide a means by which to both report what is about to happen and prevent it from happening at all. Other
hooks (the “post hooks”) run after the completion of a repository event and are useful for performing tasks that
examine—but don't modify—the repository. Each hook is handed enough information to tell what that event is
(or was), the specific repository changes proposed (or completed), and the username of the person who triggered
the event.

The hooks subdirectory is, by default, filled with templates for various repository hooks:

$ 1ls repos/hooks/

164

Repository Administration

post-commit.tmpl post-unlock.tmpl pre-revprop-change.tmpl
post-lock.tmpl pre-commit.tmpl pre-unlock.tmpl
post-revprop-change.tmpl pre-lock.tmpl start-commit.tmpl

$

There is one template for each hook that the Subversion repository supports; by examining the contents of those
template scripts, you can see what triggers each script to run and what data is passed to that script. Also present
in many of these templates are examples of how one might use that script, in conjunction with other Subver-
sion-supplied programs, to perform common useful tasks. To actually install a working hook, you need only
place some executable program or script into the repos/hooks directory, which can be executed as the name
(such as start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python program,
a compiled C binary, or any number of other things) named exactly like the name of the hook. Of course, the
template files are present for more than just informational purposes—the easiest way to install a hook on Unix
platforms is to simply copy the appropriate template file to a new file that lacks the . tmp1 extension, customize
the hook's contents, and ensure that the script is executable. Windows, however, uses file extensions to determine
whether a program is executable, so you would need to supply a program whose basename is the name of the
hook and whose extension is one of the special extensions recognized by Windows for executable programs, such
as . exe for programs and . bat for batch files.

For security reasons, the Subversion repository executes hook programs with an empty envi-
@/J ronment—that is, no environment variables are set at all, not even SPATH (or $PATH%, under
Windows). Because of this, many administrators are baffled when their hook program runs
fine by hand, but doesn't work when run by Subversion. Be sure to explicitly set any necessary

environment variables in your hook program and/or use absolute paths to programs.

Subversion executes hooks as the same user who owns the process that is accessing the Subversion repository.
In most cases, the repository is being accessed via a Subversion server, so this user is the same user as whom
the server runs on the system. The hooks themselves will need to be configured with OS-level permissions that
allow that user to execute them. Also, this means that any programs or files (including the Subversion repository)
accessed directly or indirectly by the hook will be accessed as the same user. In other words, be alert to potential
permission-related problems that could prevent the hook from performing the tasks it is designed to perform.

There are several hooks implemented by the Subversion repository, and you can get details about each of them
in the section called “Repository Hooks” in Chapter 9, Subversion Complete Reference. As a repository admin-
istrator, you'll need to decide which hooks you wish to implement (by way of providing an appropriately named
and permissioned hook program), and how. When you make this decision, keep in mind the big picture of how
your repository is deployed. For example, if you are using server configuration to determine which users are per-
mitted to commit changes to your repository, you don't need to do this sort of access control via the hook system.

There is no shortage of Subversion hook programs and scripts that are freely available either from the Subversion
community itself or elsewhere. These scripts cover a wide range of utility—basic access control, policy adherence
checking, issue tracker integration, email- or syndication-based commit notification, and beyond. Or, if you wish
to write your own, see Chapter 8, Embedding Subversion.

While hook scripts can do almost anything, there is one dimension in which hook script au-
Q thors should show restraint: do not modify a commit transaction using hook scripts. While it

165

Repository Administration

might be tempting to use hook scripts to automatically correct errors, shortcomings, or policy
violations present in the files being committed, doing so can cause problems. Subversion keeps
client-side caches of certain bits of repository data, and if you change a commit transaction
in this way, those caches become indetectably stale. This inconsistency can lead to surprising
and unexpected behavior. Instead of modifying the transaction, you should simply validate
the transaction in the pre-commi t hook and reject the commit if it does not meet the desired
requirements. As a bonus, your users will learn the value of careful, compliance-minded work
habits.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, logfiles, region files, and configuration
files. The Berkeley DB environment has its own set of default configuration values for things such as the number
of database locks allowed to be taken out at any given time, the maximum size of the journaling logfiles, and so
on. Subversion's filesystem logic additionally chooses default values for some of the Berkeley DB configuration
options. However, sometimes your particular repository, with its unique collection of data and access patterns,
might require a different set of configuration option values.

The producers of Berkeley DB understand that different applications and database environments have different
requirements, so they have provided a mechanism for overriding at runtime many of the configuration values
for the Berkeley DB environment. BDB checks for the presence of a file named DB CONFIG in the environment
directory (namely, the repository's db subdirectory), and parses the options found in that file. Subversion itself
creates this file when it creates the rest of the repository. The file initially contains some default options, as
well as pointers to the Berkeley DB online documentation so that you can read about what those options do. Of
course, you are free to add any of the supported Berkeley DB options to your DB CONF1IG file. Just be aware
that while Subversion never attempts to read or interpret the contents of the file and makes no direct use of the
option settings in it, you'll want to avoid any configuration changes that may cause Berkeley DB to behave in a
fashion that is at odds with what Subversion might expect. Also, changes made to DB CONFIG won't take effect
until you recover the database environment (using svnadmin recover).

FSFS Configuration

As of Subversion 1.6, FSFS filesystems have several configurable parameters which an administrator can use to
fine-tune the performance or disk usage of their repositories. You can find these options—and the documentation
for them—in the db/fsfs.conf file in the repository.

Repository Maintenance

Maintaining a Subversion repository can be daunting, mostly due to the complexities inherent in systems that
have a database backend. Doing the task well is all about knowing the tools—what they are, when to use them, and
how. This section will introduce you to the repository administration tools provided by Subversion and discuss
how to wield them to accomplish tasks such as repository data migration, upgrades, backups, and cleanups.

An Administrator's Toolkit

Subversion provides a handful of utilities useful for creating, inspecting, modifying, and repairing your reposi-
tory. Let's look more closely at each of those tools. Afterward, we'll briefly examine some of the utilities includ-

166

Repository Administration

ed in the Berkeley DB distribution that provide functionality specific to your repository's database backend not
otherwise provided by Subversion's own tools.

svhnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to create
Subversion repositories, this program allows you to perform several maintenance operations on those reposito-
ries. The syntax of svnadmin is similar to that of other Subversion command-line programs:

$ svnadmin help
general usage: svnadmin SUBCOMMAND REPOS PATH [ARGS & OPTIONS ...]
Type 'svnadmin help <subcommand>' for help on a specific subcommand.

Type 'svnadmin --version' to see the program version and FS modules.

Available subcommands:
crashtest
create
deltify

Previously in this chapter (in the section called “Creating the Repository”), we were introduced to the svnad-
min create subcommand. Most of the other svnadmin subcommands we will cover later in this chapter. And
you can consult the section called “svnadmin—Subversion Repository Administration” in Chapter 9, Subversion
Complete Reference for a full rundown of subcommands and what each of them offers.

svnlook

svnlook is a tool provided by Subversion for examining the various revisions and transactions (which are re-
visions in the making) in a repository. No part of this program attempts to change the repository. svnlook is
typically used by the repository hooks for reporting the changes that are about to be committed (in the case of
the pre-commit hook) or that were just committed (in the case of the post-commit hook) to the repository.
A repository administrator may use this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnlook help

general usage: svnlook SUBCOMMAND REPOS PATH [ARGS & OPTIONS ...]

Note: any subcommand which takes the '--revision' and '--transaction'
options will, if invoked without one of those options, act on
the repository's youngest revision.

Type 'svnlook help <subcommand>' for help on a specific subcommand.

Type 'svnlook --version' to see the program version and FS modules.

Most of svnlook's subcommands can operate on either a revision or a transaction tree, printing information
about the tree itself, or how it differs from the previous revision of the repository. You use the --revision (-
r) and --transaction (-t) options to specify which revision or transaction, respectively, to examine. In the
absence of both the --revision (-r) and --transaction (-t) options, svnlook will examine the youngest
(or HEAD) revision in the repository. So the following two commands do exactly the same thing when 19 is the
youngest revision in the repository located at /var/svn/repos:

167

Repository Administration

$ svnlook info /var/svn/repos

$ svnlook info /var/svn/repos -r 19

One exception to these rules about subcommands is the svnlook youngest subcommand, which takes no op-
tions and simply prints out the repository's youngest revision number:

$ svnlook youngest /var/svn/repos
19
$

Keep in mind that the only transactions you can browse are uncommitted ones. Most repos-
<> itories will have no such transactions because transactions are usually either committed (in

which case, you should access them as revision with the --revision (-r) option) or aborted
and removed.

Output from svnlook is designed to be both human- and machine-parsable. Take, as an example, the output
of the svnlook info subcommand:

$ svnlook info /var/svn/repos

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added the usual

Greek tree.

$

The output of svnlook info consists of the following, in the order given:
1. The author, followed by a newline

2. The date, followed by a newline

3. The number of characters in the log message, followed by a newline

4. The log message itself, followed by a newline

This output is human-readable, meaning items such as the datestamp are displayed using a textual representa-
tion instead of something more obscure (such as the number of nanoseconds since the Tastee Freez guy drove
by). But the output is also machine-parsable—because the log message can contain multiple lines and be un-
bounded in length, svnlook provides the length of that message before the message itself. This allows scripts
and other wrappers around this command to make intelligent decisions about the log message, such as how
much memory to allocate for the message, or at least how many bytes to skip in the event that this output is not
the last bit of data in the stream.

svnlook can perform a variety of other queries: displaying subsets of bits of information we've mentioned pre-
viously, recursively listing versioned directory trees, reporting which paths were modified in a given revision or
transaction, showing textual and property differences made to files and directories, and so on. See the section
called “svnlook—Subversion Repository Examination” in Chapter 9, Subversion Complete Reference for a full
reference of svnlook's features.

168

Repository Administration

svndumpfilter

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides a very
particular brand of useful functionality—the ability to quickly and easily modify streams of Subversion repository
history data by acting as a path-based filter.

The syntax of svndumpfilter is as follows:

$ svndumpfilter help
general usage: svndumpfilter SUBCOMMAND [ARGS & OPTIONS ...]
Type 'svndumpfilter help <subcommand>' for help on a specific subcommand.

Type 'svndumpfilter --version' to see the program version.

Available subcommands:
exclude
include
help (?, h)

There are only two interesting subcommands: svndumpfilter exclude and svndumpfilter include. They
allow you to make the choice between implicit or explicit inclusion of paths in the stream. You can learn more
about these subcommands and svndumpfilter's unique purpose later in this chapter, in the section called
“Filtering Repository History”.

svnrdump

The svnrdump program is, to put it simply, essentially just network-aware flavors of the svnadmin dump
and svnadmin load subcommands, rolled up into a separate program.

$ svnrdump help
general usage: svnrdump SUBCOMMAND URL [-r LOWER[:UPPER]]
Type 'svnrdump help <subcommand>' for help on a specific subcommand.

Type 'svnrdump --version' to see the program version and RA modules.

Available subcommands:
dump
load
help (?, h)

We discuss the use of svnrdump and the aforementioned svnadmin commands later in this chapter (see the
section called “Migrating Repository Data Elsewhere”).

svnsync

The svnsync program provides all the functionality required for maintaining a read-only mirror of a Subversion
repository. The program really has one job—to transfer one repository's versioned history into another reposi-
tory. And while there are few ways to do that, its primary strength is that it can operate remotely—the “source”
and “sink” repositories may be on different computers from each other and from svnsync itself.

7Or is that, the “sync”?

169

Repository Administration

As you might expect, svnsync has a syntax that looks very much like every other program we've mentioned in
this chapter:

$ svnsync help
general usage: svnsync SUBCOMMAND DEST URL [ARGS & OPTIONS ...]
Type 'svnsync help <subcommand>' for help on a specific subcommand.

Type 'svnsync --version' to see the program version and RA modules.

Available subcommands:
initialize (init)
synchronize (sync)
COpYy—revprops
info
help (2, h)

We talk more about replicating repositories with svnsync later in this chapter (see the section called “Repository
Replication™).

fsfs-reshard.py

While not an official member of the Subversion toolchain, the fsfs-reshard.py script (found in the tools/
server-side directory of the Subversion source distribution) is a useful performance tuning tool for admin-
istrators of FSFS-backed Subversion repositories. As described in the sidebar Revision files and shards, FSFS
repositories use individual files to house information about each revision. Sometimes these files all live in a
single directory; sometimes they are sharded across many directories. But the neat thing is that the number of
directories used to house these files is configurable. That's where fsfs-reshard.py comes in.

fsfs-reshard.py reshuffles the repository's file structure into a new arrangement that reflects the requested
number of sharding subdirectories and updates the repository configuration to preserve this change. When used
in conjunction with the svnadmin upgrade command, this is especially useful for upgrading a pre-1.5 Sub-
version (unsharded) repository to the latest filesystem format and sharding its data files (which Subversion will
not automatically do for you). This script can also be used for fine-tuning an already sharded repository.

Berkeley DB utilities

If you're using a Berkeley DB repository, all of your versioned filesystem's structure and data live in a set of
database tables within the db/ subdirectory of your repository. This subdirectory is a regular Berkeley DB envi-
ronment directory and can therefore be used in conjunction with any of the Berkeley database tools, typically
provided as part of the Berkeley DB distribution.

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed for Sub-
version repositories has been duplicated in the svnadmin tool. For example, svnadmin list-unused-dblogs
and svnadmin list-dblogs perform a subset of what is provided by the Berkeley db_ archive utility, and sv-
nadmin recover reflects the common use cases of the db_ recover utility.

However, there are still a few Berkeley DB utilities that you might find useful. The db_dump and db_load
programs write and read, respectively, a custom file format that describes the keys and values in a Berkeley DB
database. Since Berkeley databases are not portable across machine architectures, this format is a useful way
to transfer those databases from machine to machine, irrespective of architecture or operating system. As we
describe later in this chapter, you can also use svnadmin dump and svnadmin load for similar purposes,

170

Repository Administration

but db_dump and db_load can do certain jobs just as well and much faster. They can also be useful if the
experienced Berkeley DB hacker needs to do in-place tweaking of the data in a BDB-backed repository for some
reason, which is something Subversion's utilities won't allow. Also, the db__stat utility can provide useful infor-
mation about the status of your Berkeley DB environment, including detailed statistics about the locking and
storage subsystems.

For more information on the Berkeley DB tool chain, visit the documentation section of the Berkeley DB section
of Oracle's web site, located at http://www.oracle.com/technology/documentation/berkeley-db/db/.

Commit Log Message Correction

Sometimes a user will have an error in her log message (a misspelling or some misinformation, perhaps). If the
repository is configured (using the pre-revprop-change hook; see the section called “Implementing Reposi-
tory Hooks”) to accept changes to this log message after the commit is finished, the user can “fix” her log message
remotely using svn propset (see svn propset (pset, ps) in Chapter 9, Subversion Complete Reference). Howev-
er, because of the potential to lose information forever, Subversion repositories are not, by default, configured
to allow changes to unversioned properties—except by an administrator.

If a log message needs to be changed by an administrator, this can be done using svnadmin setlog. This com-
mand changes the log message (the svn : 1og property) on a given revision of a repository, reading the new value
from a provided file.

$ echo "Here is the new, correct log message" > newlog.txt

$ svnadmin setlog myrepos newlog.txt -r 388

The svnadmin setlog command, by default, is still bound by the same protections against modifying unver-
sioned properties as a remote client is—the pre-revprop-change and post-revprop-change hooks are
still triggered, and therefore must be set up to accept changes of this nature. But an administrator can get around
these protections by passing the --bypass-hooks option to the svnadmin setlog command.

Remember, though, that by bypassing the hooks, you are likely avoiding such things as email
° notifications of property changes, backup systems that track unversioned property changes,

and so on. In other words, be very careful about what you are changing, and how you change it.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is still a valid concern for
administrators seeking to version large amounts of data. Every bit of version history information stored in the
live repository needs to be backed up elsewhere, perhaps multiple times as part of rotating backup schedules. It
is useful to know what pieces of Subversion's repository data need to remain on the live site, which need to be
backed up, and which can be safely removed.

How Subversion saves disk space

To keep the repository small, Subversion uses deltification (or delta-based storage) within the repository itself.
Deltification involves encoding the representation of a chunk of data as a collection of differences against some
other chunk of data. If the two pieces of data are very similar, this deltification results in storage savings for the
deltified chunk—rather than taking up space equal to the size of the original data, it takes up only enough space

171

http://www.oracle.com/technology/documentation/berkeley-db/db/

Repository Administration

to say, “I look just like this other piece of data over here, except for the following couple of changes.” The result
is that most of the repository data that tends to be bulky—namely, the contents of versioned files—is stored at a
much smaller size than the original full-text representation of that data.

While deltified storage has been a part of Subversion's design since the very beginning, there have been additional
improvements made over the years. Subversion repositories created with Subversion 1.4 or later benefit from
compression of the full-text representations of file contents. Repositories created with Subversion 1.6 or later
further enjoy the disk space savings afforded by representation sharing, a feature which allows multiple files or
file revisions with identical file content to refer to a single shared instance of that data rather than each having
their own distinct copy thereof.

Because all of the data that is subject to deltification in a BDB-backed repository is stored in
O/ a single Berkeley DB database file, reducing the size of the stored values will not immediately
reduce the size of the database file itself. Berkeley DB will, however, keep internal records of
unused areas of the database file and consume those areas first before growing the size of the
database file. So while deltification doesn't produce immediate space savings, it can drastically

slow future growth of the database.

Removing dead transactions

Though they are uncommon, there are circumstances in which a Subversion commit process might fail, leaving
behind in the repository the remnants of the revision-to-be that wasn't—an uncommitted transaction and all the
file and directory changes associated with it. This could happen for several reasons: perhaps the client operation
was inelegantly terminated by the user, or a network failure occurred in the middle of an operation. Regardless
of the reason, dead transactions can happen. They don't do any real harm, other than consuming disk space. A
fastidious administrator may nonetheless wish to remove them.

You can use the svnadmin Istxns command to list the names of the currently outstanding transactions:

$ svnadmin lstxns myrepos
19

3al

a4bs

S

Each item in the resultant output can then be used with svnlook (and its --transaction (-t) option) to de-
termine who created the transaction, when it was created, what types of changes were made in the transaction—
information that is helpful in determining whether the transaction is a safe candidate for removal! If you do
indeed want to remove a transaction, its name can be passed to svnadmin rmtxns, which will perform the
cleanup of the transaction. In fact, synadmin rmtxns can take its input directly from the output of svsnadmin
Istxns!

$ svnadmin rmtxns myrepos svnadmin lstxns myrepos

$

If you use these two subcommands like this, you should consider making your repository temporarily inacces-
sible to clients. That way, no one can begin a legitimate transaction before you start your cleanup. Example 5.1,
“txn-info.sh (reporting outstanding transactions)” contains a bit of shell-scripting that can quickly generate in-
formation about each outstanding transaction in your repository.

172

Repository Administration

Example 5.1. txn-info.sh (reporting outstanding transactions)

#!/bin/sh

Generate informational output for all outstanding transactions in

a Subversion repository.

REPOS="${1}"

if ["xSREPOS" = x] ; then
echo "usage: $0 REPOS_ PATH"
exit

fi

for TXN in “svnadmin lstxns ${REPOS} ; do

eche === Transactien S{IHN]]-—=mcsocmsccsosomocosossssoooosososossssmsss "
svnlook info "S${REPOS}" -t "S{TXN}"
done

The output of the script is basically a concatenation of several chunks of svnlook info output (see the section
called “svnlook”) and will look something like this:

$ txn-info.sh myrepos

-—-[Transaction 19]-------"-""-"""—"""""-"—"-"—""-"—"—"—"—"—"—"—"—\—"—"—"—~—~—~—\—\—~—\—~——

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

=== Tramgzcitilon Jal |=cc—mmccccsmcrorsrrsrrrs s me s me s s e s e
harry

2001-09-10 16:50:30 -0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

———[Transaction ad45]|-—————————————————\————\—————————————————————
sally

2001-09-12 11:09:28 -0500 (Wed, 12 Sep 2001)

0

$

Along-abandoned transaction usually represents some sort of failed or interrupted commit. A transaction's dat-
estamp can provide interesting information—for example, how likely is it that an operation begun nine months
ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including
Apache's error and access logs, Subversion's operational logs, Subversion revision history, and so on—can be
employed in the decision-making process. And of course, an administrator can often simply communicate with
a seemingly dead transaction's owner (via email, e.g.) to verify that the transaction is, in fact, in a zombie state.

Purging unused Berkeley DB logfiles

Until recently, the largest offender of disk space usage with respect to BDB-backed Subversion repositories were
the logfiles in which Berkeley DB performs its prewrites before modifying the actual database files. These files
capture all the actions taken along the route of changing the database from one state to another—while the

173

Repository Administration

database files, at any given time, reflect a particular state, the logfiles contain all of the many changes along the
way between states. Thus, they can grow and accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to remove
its own unused logfiles automatically. Any repositories created using svnadmin when compiled against Berke-
ley DB version 4.2 or later will be configured for this automatic logfile removal. If you don't want this feature
enabled, simply pass the --bdb-10g-keep option to the svnadmin create command. If you forget to do this
or change your mind at a later time, simply edit the DB CONFIG file found in your repository's db directory,
comment out the line that contains the set flags DB LOG AUTOREMOVE directive, and then run svnadmin
recover on your repository to force the configuration changes to take effect. See the section called “Berkeley
DB Configuration” for more information about database configuration.

Without some sort of automatic logfile removal in place, logfiles will accumulate as you use your repository. This
is actually somewhat of a feature of the database system—you should be able to recreate your entire database
using nothing but the logfiles, so these files can be useful for catastrophic database recovery. But typically, you'll
want to archive the logfiles that are no longer in use by Berkeley DB, and then remove them from disk to conserve
space. Use the svnadmin list-unused-dblogs command to list the unused logfiles:

$ svnadmin list-unused-dblogs /var/svn/repos
/var/svn/repos/log.0000000031
/var/svn/repos/log.0000000032
/var/svn/repos/log.0000000033

$ rm ‘svnadmin list-unused-dblogs /var/svn/repos’

disk space reclaimed!

BDB-backed repositories whose logfiles are used as part of a backup or disaster recovery plan
Q should not make use of the logfile autoremoval feature. Reconstruction of a repository's data
from logfiles can only be accomplished only when all the logfiles are available. If some of the
logfiles are removed from disk before the backup system has a chance to copy them elsewhere,

the incomplete set of backed-up logfiles is essentially useless.

Packing FSFS filesystems

As described in the sidebar Revision files and shards, FSFS-backed Subversion repositories create, by default,
a new on-disk file for each revision added to the repository. Having thousands of these files present on your
Subversion server—even when housed in separate shard directories—can lead to inefficiencies.

The first problem is that the operating system has to reference many different files over a short period of time.
This leads to inefficient use of disk caches and, as a result, more time spent seeking across large disks. Because
of this, Subversion pays a performance penalty when accessing your versioned data.

The second problem is a bit more subtle. Because of the ways that most filesystems allocate disk space, each file
claims more space on the disk than it actually uses. The amount of extra space required to house a single file can
average anywhere from 2 to 16 kilobytes per file, depending on the underlying filesystem in use. This translates
directly into a per-revision disk usage penalty for FSFS-backed repositories. The effect is most pronounced in
repositories which have many small revisions, since the overhead involved in storing the revision file quickly
outgrows the size of the actual data being stored.

To solve these problems, Subversion 1.6 introduced the svnadmin pack command. By concatenating all the
files of a completed shard into a single “pack” file and then removing the original per-revision files, svsnadmin

174

Repository Administration

pack reduces the file count within a given shard down to just a single file. In doing so, it aids filesystem caches
and reduces (to one) the number of times a file storage overhead penalty is paid.

Subversion can pack existing sharded repositories which have been upgraded to the 1.6 filesystem format or later
(see svnadmin upgrade) in Chapter 9, Subversion Complete Reference. To do so, just run svnadmin pack on
the repository:

$ svnadmin pack /var/svn/repos
Packing shard 0...done.
Packing shard 1...done.

Packing shard 2...done.

Packing shard 34...done.
Packing shard 35...done.
Packing shard 36...done.
$

Because the packing process obtains the required locks before doing its work, you can run it on live repositories,
or even as part of a post-commit hook. Repacking packed shards is legal, but will have no effect on the disk usage
of the repository.

svnadmin pack has no effect on BDB-backed Subversion repositories.

Berkeley DB Recovery

As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be left in a frozen
state if not closed properly. When this happens, an administrator needs to rewind the database back into a
consistent state. This is unique to BDB-backed repositories, though—if you are using FSFS-backed ones instead,
this won't apply to you. And for those of you using Subversion 1.4 with Berkeley DB 4.4 or later, you should
find that Subversion has become much more resilient in these types of situations. Still, wedged Berkeley DB
repositories do occur, and an administrator needs to know how to safely deal with this circumstance.

To protect the data in your repository, Berkeley DB uses a locking mechanism. This mechanism ensures that
portions of the database are not simultaneously modified by multiple database accessors, and that each process
sees the data in the correct state when that data is being read from the database. When a process needs to change
something in the database, it first checks for the existence of a lock on the target data. If the data is not locked, the
process locks the data, makes the change it wants to make, and then unlocks the data. Other processes are forced
to wait until that lock is removed before they are permitted to continue accessing that section of the database.
(This has nothing to do with the locks that you, as a user, can apply to versioned files within the repository; we
try to clear up the confusion caused by this terminology collision in the sidebar The Three Meanings of “Lock”.)

In the course of using your Subversion repository, fatal errors or interruptions can prevent a process from having
the chance to remove the locks it has placed in the database. The result is that the backend database system gets
“wedged.” When this happens, any attempts to access the repository hang indefinitely (since each new accessor
is waiting for a lock to go away—which isn't going to happen).

If this happens to your repository, don't panic. The Berkeley DB filesystem takes advantage of database trans-
actions, checkpoints, and prewrite journaling to ensure that only the most catastrophic of events® can perma-

8For example, hard drive + huge electromagnet = disaster.

175

Repository Administration

nently destroy a database environment. A sufficiently paranoid repository administrator will have made off-site
backups of the repository data in some fashion, but don't head off to the tape backup storage closet just yet.

Instead, use the following recipe to attempt to “unwedge” your repository:

1. Make sure no processes are accessing (or attempting to access) the repository. For networked repositories,
this also means shutting down the Apache HTTP Server or svnserve daemon.

2. Become the user who owns and manages the repository. This is important, as recovering a repository while
running as the wrong user can tweak the permissions of the repository's files in such a way that your repository
will still be inaccessible even after it is “unwedged.”

3. Run the command svnadmin recover /var/svn/repos.You should see output such as this:

Repository lock acquired.

Please wait; recovering the repository may take some time...

Recovery completed.

The latest repos revision is 19.
This command may take many minutes to complete.
4. Restart the server process.

This procedure fixes almost every case of repository wedging. Make sure that you run this command as the user
that owns and manages the database, not just as root. Part of the recovery process might involve re-creating
from scratch various database files (shared memory regions, e.g.). Recovering as root will create those files such
that they are owned by root, which means that even after you restore connectivity to your repository, regular
users will be unable to access it.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should do
two things. First, move your broken repository directory aside (perhaps by renaming it to something like
repos .BROKEN) and then restore your latest backup of it. Then, send an email to the Subversion users mailing
list (at <users@subversion.apache.org>) describing your problem in detail. Data integrity is an extremely
high priority to the Subversion developers.

Migrating Repository Data Elsewhere

A Subversion filesystem has its data spread throughout files in the repository, in a fashion generally understood
by (and of interest to) only the Subversion developers themselves. However, circumstances may arise that call
for all, or some subset, of that data to be copied or moved into another repository.

Subversion provides such functionality by way of repository dump streams. A repository dump stream (often
referred to as a “dump file” when stored as a file on disk) is a portable, flat file format that describes the various
revisions in your repository—what was changed, by whom, when, and so on. This dump stream is the prima-
ry mechanism used to marshal versioned history—in whole or in part, with or without modification—between
repositories. And Subversion provides the tools necessary for creating and loading these dump streams: the sv-
nadmin dump and svnadmin load subcommands, respectively, and the svnrdump program.

While the Subversion repository dump format contains human-readable portions and a famil-
Q iar structure (it resembles an RFC 822 format, the same type of format used for most email),

176

Repository Administration

it is not a plain-text file format. It is a binary file format, highly sensitive to meddling. For
example, many text editors will corrupt the file by automatically converting line endings.

There are many reasons for dumping and loading Subversion repository data. Early in Subversion's life, the
most common reason was due to the evolution of Subversion itself. As Subversion matured, there were times
when changes made to the backend database schema caused compatibility issues with previous versions of the
repository, so users had to dump their repository data using the previous version of Subversion and load it into
a freshly created repository with the new version of Subversion. Now, these types of schema changes haven't
occurred since Subversion's 1.0 release, and the Subversion developers promise not to force users to dump and
load their repositories when upgrading between minor versions (such as from 1.3 to 1.4) of Subversion. But there
are still other reasons for dumping and loading, including re-deploying a Berkeley DB repository on a new OS or
CPU architecture, switching between the Berkeley DB and FSFS backends, or (as we'll cover later in this chapter
in the section called “Filtering Repository History”) purging versioned data from repository history.

The Subversion repository dump format describes versioned repository changes only. It will
O/ not carry any information about uncommitted transactions, user locks on filesystem paths,

repository or server configuration customizations (including hook scripts), and so on.

The Subversion repository dump format also enables conversion from a different storage mechanism or version
control system altogether. Because the dump file format is, for the most part, human-readable, it should be
relatively easy to describe generic sets of changes—each of which should be treated as a new revision—using this
file format. In fact, the cvs2svn utility (see the section called “Converting a Repository from CVS to Subversion”)
uses the dump format to represent the contents of a CVS repository so that those contents can be copied into
a Subversion repository.

For now, we'll concern ourselves only with migration of repository data between Subversion repositories, which
we'll describe in detail in the sections which follow.

Repository data migration using svhadmin

Whatever your reason for migrating repository history, using the svnadmin dump and svhnadmin load sub-
commands is straightforward. svnadmin dump will output a range of repository revisions that are formatted
using Subversion's custom filesystem dump format. The dump format is printed to the standard output stream,
while informative messages are printed to the standard error stream. This allows you to redirect the output
stream to a file while watching the status output in your terminal window. For example:

$ svnlook youngest myrepos

26

$ svnadmin dump myrepos > dumpfile
* Dumped revision 0.

* Dumped revision 1.

* Dumped revision 2.

* Dumped revision 25.

* Dumped revision 26.

At the end of the process, you will have a single file (dumpf i 1 e in the previous example) that contains all the data
stored in your repository in the requested range of revisions. Note that svnadmin dump is reading revision
trees from the repository just like any other “reader” process would (e.g., svn checkout), so it's safe to run this
command at any time.

177

Repository Administration

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion repos-
itory dump file and effectively replays those dumped revisions into the target repository for that operation. It
also gives informative feedback, this time using the standard output stream:

$ svnadmin load newrepos < dumpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

——————— Committed new rev 1 (loaded from original rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A/mu ... done.
* editing path : A/D/G/rho ... done.

——————— Committed new rev 2 (loaded from original rev 2) >>>

<<< Started new txn, based on original revision 25

* editing path : A/D/gamma ... done.
——————— Committed new rev 25 (loaded from original rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A/mu ... done.

——————— Committed new rev 26 (loaded from original rev 26) >>>

The result of a load is new revisions added to a repository—the same thing you get by making commits against
that repository from a regular Subversion client. Just as in a commit, you can use hook programs to perform
actions before and after each of the commits made during a load process. By passing the --use-pre-com-
mit-hook and --use-post-commit-hook options to svnadmin load, you can instruct Subversion to ex-
ecute the pre-commit and post-commit hook programs, respectively, for each loaded revision. You might use
these, for example, to ensure that loaded revisions pass through the same validation steps that regular commits
pass through. Of course, you should use these options with care—if your post-commit hook sends emails to a
mailing list for each new commit, you might not want to spew hundreds or thousands of commit emails in rapid
succession at that list! You can read more about the use of hook scripts in the section called “Implementing
Repository Hooks”.

Note that because svnadmin uses standard input and output streams for the repository dump and load process-
es, people who are feeling especially saucy can try things such as this (perhaps even using different versions of
svnadmin on each side of the pipe):

$ svnadmin create newrepos

S svnadmin dump oldrepos | svnadmin load newrepos

By default, the dump file will be quite large—much larger than the repository itself. That's because by default
every version of every file is expressed as a full text in the dump file. This is the fastest and simplest behavior,

178

Repository Administration

and it's nice if you're piping the dump data directly into some other process (such as a compression program,
filtering program, or loading process). But if you're creating a dump file for longer-term storage, you'll likely
want to save disk space by using the --deltas option. With this option, successive revisions of files will be
output as compressed, binary differences—just as file revisions are stored in a repository. This option is slower,
but it results in a dump file much closer in size to the original repository.

We mentioned previously that svmadmin dump outputs a range of revisions. Use the --revision (-r) option
to specify a single revision, or a range of revisions, to dump. If you omit this option, all the existing repository
revisions will be dumped.

$ svnadmin dump myrepos -r 23 > rev-23.dumpfile

$ svnadmin dump myrepos -r 100:200 > revs-100-200.dumpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create
that revision based on the previous one. In other words, for any given revision in the dump file, only the items
that were changed in that revision will appear in the dump. The only exception to this rule is the first revision
that is dumped with the current svnadmin dump command.

By default, Subversion will not express the first dumped revision as merely differences to be applied to the previ-
ous revision. For one thing, there is no previous revision in the dump file! And second, Subversion cannot know
the state of the repository into which the dump data will be loaded (if it ever is). To ensure that the output of each
execution of svnadmin dump is self-sufficient, the first dumped revision is, by default, a full representation
of every directory, file, and property in that revision of the repository.

However, you can change this default behavior. If you add the --incremental option when you dump your
repository, svnadmin will compare the first dumped revision against the previous revision in the repository—
the same way it treats every other revision that gets dumped. It will then output the first revision exactly as it
does the rest of the revisions in the dump range—mentioning only the changes that occurred in that revision.
The benefit of this is that you can create several small dump files that can be loaded in succession, instead of
one large one, like so:

$ svnadmin dump myrepos -r 0:1000 > dumpfilel
$ svnadmin dump myrepos -r 1001:2000 --incremental > dumpfile2

$ svnadmin dump myrepos -r 2001:3000 --incremental > dumpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadmin load newrepos < dumpfilel
$ svnadmin load newrepos < dumpfile?2

$ svnadmin load newrepos < dumpfile3

Another neat trick you can perform with this --incremental option involves appending to an existing dump
file a new range of dumped revisions. For example, you might have a post-commi t hook that simply appends
the repository dump of the single revision that triggered the hook. Or you might have a script that runs nightly
to append dump file data for all the revisions that were added to the repository since the last time the script ran.
Used like this, svnadmin dump can be one way to back up changes to your repository over time in case of a
system crash or some other catastrophic event.

The dump format can also be used to merge the contents of several different repositories into a single repository.
By using the --parent-dir option of svnadmin load, you can specify a new virtual root directory for the

179

Repository Administration

load process. That means if you have dump files for three repositories—say calc-dumpfile, cal-dumpfile,
and ss-dumpfile—you can first create a new repository to hold them all:

$ svnadmin create /var/svn/projects

$

Then, make new directories in the repository that will encapsulate the contents of each of the three previous
repositories:

$ svn mkdir -m "Initial project roots™ \
file:///var/svn/projects/calc \
file:///var/svn/projects/calendar \
file:///var/svn/projects/spreadsheet
Committed revision 1.

$

Lastly, load the individual dump files into their respective locations in the new repository:

$ svnadmin load /var/svn/projects —--parent-dir calc < calc-dumpfile
$ svnadmin load /var/svn/projects --parent-dir calendar < cal-dumpfile

$ svnadmin load /var/svn/projects —--parent-dir spreadsheet < ss-dumpfile

Repository data migration using svnrdump

In Subversion 1.7, svnrdump joined the set of stock Subversion tools. It offers fairly specialized functional-
ity, essentially as a network-aware version of the svnadmin dump and svhadmin load commands which
we discuss in depth in the section called “Repository data migration using svnadmin”. svnrdump dump will
generate a dump stream from a remote repository, spewing it to standard output; svnrdump load will read
a dump stream from standard input and load it into a remote repository. Using svnrdump, you can generate
incremental dumps just as you might with svmadmin dump. You can even dump a subtree of the repository—
something that svnadmin dump cannot do.

The primary difference is that instead of requiring direct access to the repository, svnrdump operates remotely,
using the very same Repository Access (RA) protocols that the Subversion client does. As such, you might need
to provide authentication credentials. Also, your remote interations are subject to any authorization limitations
configured on the Subversion server.

svnrdump dump requires that the remote server be running Subversion 1.4 or newer. It
currently generates dump streams only of the sort which are created when you pass the —-

&

deltas option to svnadmin dump. This isn't interesting in the typical use-cases, but might
impact specific types of custom transformations you might wish to apply to the resulting dump
stream.

quires that the target repository have revision property changes enabled via the pre-revprop-

: Because it modifies revision properties after committing new revisions, svnrdump load re-

180

Repository Administration

change hook. See pre-revprop-change in Chapter 9, Subversion Complete Reference for de-
tails.

As you might expect, you can use svnadmin and svnrdump in concert. You can, for example, use svnrdump
dump to generate a dump stream from a remote repository, and pipe the results thereof through svnadmin
load to copy all that repository history into a local repository. Or you can do the reverse, copying history from
a local repository into a remote one.

By using file:// URLs, svnrdump can also access local repositories, but it will be doing so
@') via Subversion's Repository Access (RA) abstraction layer—you'll get better performance out

of svnadmin in such situations.

Filtering Repository History

Since Subversion stores your versioned history using, at the very least, binary differencing algorithms and data
compression (optionally in a completely opaque database system), attempting manual tweaks is unwise if not
quite difficult, and at any rate strongly discouraged. And once data has been stored in your repository, Subver-
sion generally doesn't provide an easy way to remove that data.’ But inevitably, there will be times when you
would like to manipulate the history of your repository. You might need to strip out all instances of a file that
was accidentally added to the repository (and shouldn't be there for whatever reason).'® Or, perhaps you have
multiple projects sharing a single repository, and you decide to split them up into their own repositories. To
accomplish tasks such as these, administrators need a more manageable and malleable representation of the
data in their repositories—the Subversion repository dump format.

As we described earlier in the section called “Migrating Repository Data Elsewhere”, the Subversion repository
dump format is a human-readable representation of the changes that you've made to your versioned data over
time. Use the svnadmin dump or svnrdump dump command to generate the dump data, and svnadmin
load or svnrdump load to populate a new repository with it. The great thing about the human-readability
aspect of the dump format is that, if you aren't careless about it, you can manually inspect and modify it. Of
course, the downside is that if you have three years' worth of repository activity encapsulated in what is likely to
be a very large dump file, it could take you a long, long time to manually inspect and modify it.

That's where svndumpfilter becomes useful. This program acts as a path-based filter for repository dump
streams. Simply give it either a list of paths you wish to keep or a list of paths you wish to not keep, and then pipe
your repository dump data through this filter. The result will be a modified stream of dump data that contains
only the versioned paths you (explicitly or implicitly) requested.

Let's look at a realistic example of how you might use this program. Earlier in this chapter (see the section
called “Planning Your Repository Organization”), we discussed the process of deciding how to choose a layout
for the data in your repositories—using one repository per project or combining them, arranging stuff within
your repository, and so on. But sometimes after new revisions start flying in, you rethink your layout and would
like to make some changes. A common change is the decision to move multiple projects that are sharing a single
repository into separate repositories for each project.

Our imaginary repository contains three projects: calc, calendar, and spreadsheet. They have been living
side-by-side in a layout like this:

9That's rather the reason you use version control at all, right?
'Conscious, cautious removal of certain bits of versioned data is actually supported by real use cases. That's why an “obliterate” feature has been
one of the most highly requested Subversion features, and one which the Subversion developers hope to soon provide.

181

Repository Administration

/

calc/
trunk/
branches/
tags/

calendar/
trunk/
branches/
tags/

spreadsheet/
trunk/
branches/

tags/

To get these three projects into their own repositories, we first dump the whole repository:

$ svnadmin dump /var/svn/repos > repos-dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.

* Dumped revision 3.

Next, run that dump file through the filter, each time including only one of our top-level directories. This results

in three new dump files:

S svndumpfilter include calc < repos-dumpfile > calc-dumpfile
$ svndumpfilter include calendar < repos-dumpfile > cal-dumpfile

S svndumpfilter include spreadsheet < repos-dumpfile > ss-dumpfile

At this point, you have to make a decision. Each of your dump files will create a valid repository, but will preserve
the paths exactly as they were in the original repository. This means that even though you would have a repository
solely for your calc project, that repository would still have a top-level directory named ca1lc. If you want your
trunk, tags, and branches directories to live in the root of your repository, you might wish to edit your dump
files, tweaking the Node-path and Node-copyfrom-path headers so that they no longer have that first calc/
path component. Also, you'll want to remove the section of dump data that creates the calc directory. It will
look something like the following;:

Node-path: calc
Node-action: add
Node-kind: dir
Content-length: O

182

Repository Administration

If you do plan on manually editing the dump file to remove a top-level directory, make sure
your editor is not set to automatically convert end-of-line characters to the native format (e.g.,
\r\n to \n), as the content will then not agree with the metadata. This will render the dump
file useless.

All that remains now is to create your three new repositories, and load each dump file into the right repository,
ignoring the UUID found in the dump stream:

$ svnadmin create calc

$ svnadmin load --ignore-uuid calc < calc-dumpfile

<<< Started new transaction, based on original revision 1
* adding path : Makefile ... done.
* adding path : button.c ... done.

$ svnadmin create calendar

$ svnadmin load --ignore-uuid calendar < cal-dumpfile

<<< Started new transaction, based on original revision 1
* adding path : Makefile ... done.
* adding path : cal.c ... done.

$ svnadmin create spreadsheet

$ svnadmin load --ignore-uuid spreadsheet < ss-dumpfile

<<< Started new transaction, based on original revision 1
* adding path : Makefile ... done.

* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions. If a
given revision contains only changes to paths that were filtered out, that now-empty revision could be considered
uninteresting or even unwanted. So to give the user control over what to do with those revisions, svndumpfilter
provides the following command-line options:

-—drop-empty-revs
Do not generate empty revisions at all—just omit them.

-—-renumber-revs
If empty revisions are dropped (using the --drop-empty-revs option), change the revision numbers of
the remaining revisions so that there are no gaps in the numeric sequence.

--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom prop-
erties, etc.) for those empty revisions. Otherwise, empty revisions will contain only the original datestamp,
and a generated log message that indicates that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful and a huge timesaver, there are unfortunately a couple of gotchas.
First, this utility is overly sensitive to path semantics. Pay attention to whether paths in your dump file are
specified with or without leading slashes. You'll want to look at the Node-path and Node-copyfrom-path
headers.

183

Repository Administration

Node-path: spreadsheet/Makefile

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndumpfilter
include and svndumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file has an
inconsistent usage of leading slashes for some reason," you should probably normalize those paths so that they
all have, or all lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository, where a
new path is created by copying some already existing path. It is possible that at some point in the lifetime of
your repository, you might have copied a file or directory from some location that svndumpfilter is excluding,
to a location that it is including. To make the dump data self-sufficient, svndumpfilter needs to still show the
addition of the new path—including the contents of any files created by the copy—and not represent that addition
as a copy from a source that won't exist in your filtered dump data stream. But because the Subversion repository
dump format shows only what was changed in each revision, the contents of the copy source might not be readily
available. If you suspect that you have any copies of this sort in your repository, you might want to rethink your
set of included/excluded paths, perhaps including the paths that served as sources of your troublesome copy
operations, too.

Finally, svndumpfilter takes path filtering quite literally. If you are trying to copy the history of a project rooted
at trunk/my-project and move it into a repository of its own, you would, of course, use the svndumpfilter
include command to keep all the changes in and under t runk/my-project. But the resultant dump file makes
no assumptions about the repository into which you plan to load this data. Specifically, the dump data might
begin with the revision that added the trunk/my-project directory, but it will not contain directives that
would create the t runk directory itself (because t runk doesn't match the include filter). You'll need to make
sure that any directories that the new dump stream expects to exist actually do exist in the target repository
before trying to load the stream into that repository.

Repository Replication

There are several scenarios in which it is quite handy to have a Subversion repository whose version history is
exactly the same as some other repository's. Perhaps the most obvious one is the maintenance of a simple backup
repository, used when the primary repository has become inaccessible due to a hardware failure, network outage,
or other such annoyance. Other scenarios include deploying mirror repositories to distribute heavy Subversion
load across multiple servers, use as a soft-upgrade mechanism, and so on.

Subversion provides a program for managing scenarios such as these. svnsync works by essentially asking the
Subversion server to “replay” revisions, one at a time. It then uses that revision information to mimic a commit
of the same to another repository. Neither repository needs to be locally accessible to the machine on which
svnsync is running—its parameters are repository URLSs, and it does all its work through Subversion's Repos-
itory Access (RA) interfaces. All it requires is read access to the source repository and read/write access to the
destination repository.

When using svnsync against a remote source repository, the Subversion server for that repos-
Q/ itory must be running Subversion version 1.4 or later.

“"While svnadmin dump has a consistent leading slash policy (to not include them), other programs that generate dump data might not be so
consistent.

184

Repository Administration

Replication with svnsync

Assuming you already have a source repository that you'd like to mirror, the next thing you need is a target
repository that will actually serve as that mirror. This target repository can use either of the available filesystem
data-store backends (see the section called “Choosing a Data Store”)—Subversion's abstraction layers ensure
that such details don't matter. But by default, it must not yet have any version history in it. (We'll discuss an
exception to this later in this section.)

The protocol that svnsyne uses to communicate revision information is highly sensitive to mismatches between
the versioned histories contained in the source and target repositories. For this reason, while svnsync cannot
demand that the target repository be read-only,'* allowing the revision history in the target repository to change
by any mechanism other than the mirroring process is a recipe for disaster.

Do not modify a mirror repository in such a way as to cause its version history to deviate from
° that of the repository it mirrors. The only commits and revision property modifications that

ever occur on that mirror repository should be those performed by the svnsyne tool.

Another requirement of the target repository is that the svnsync process be allowed to modify revision prop-
erties. Because svnsync works within the framework of that repository's hook system, the default state of the
repository (which is to disallow revision property changes; see pre-revprop-change in Chapter 9, Subversion
Complete Reference) is insufficient. You'll need to explicitly implement the pre-revprop-change hook, and your
script must allow svnsyne to set and change revision properties. With those provisions in place, you are ready
to start mirroring repository revisions.

It's a good idea to implement authorization measures that allow your repository replication
@/J process to perform its tasks while preventing other users from modifying the contents of your

mirror repository at all.

Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper this discourse
with practical recommendations, which you are free to disregard if they aren't required by or suitable for your
environment.

We will be mirroring the public Subversion repository which houses the source code for this very book and ex-
posing that mirror publicly on the Internet, hosted on a different machine than the one on which the original
Subversion source code repository lives. This remote host has a global configuration that permits anonymous
users to read the contents of repositories on the host, but requires users to authenticate to modify those reposi-
tories. (Please forgive us for glossing over the details of Subversion server configuration for the moment—those
are covered thoroughly in Chapter 6, Server Configuration.) And for no other reason than that it makes for a
more interesting example, we'll be driving the replication process from a third machine—the one that we cur-
rently find ourselves using.

First, we'll create the repository which will be our mirror. This and the next couple of steps do require shell
access to the machine on which the mirror repository will live. Once the repository is all configured, though, we
shouldn't need to touch it directly again.

$ ssh admin@svn.example.com "svnadmin create /var/svn/svn-mirror"

'®In fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.

185

Repository Administration

admin@svn.example.com's password: ***xxkkkk

$

At this point, we have our repository, and due to our server's configuration, that repository is now “live” on the
Internet. Now, because we don't want anything modifying the repository except our replication process, we need
a way to distinguish that process from other would-be committers. To do so, we use a dedicated username for
our process. Only commits and revision property modifications performed by the special username syncuser
will be allowed.

We'll use the repository's hook system both to allow the replication process to do what it needs to do and to en-
force that only it is doing those things. We accomplish this by implementing two of the repository event hooks—
pre-revprop-change and start-commit. Our pre-revprop-change hook script is found in Example 5.2, “Mir-
ror repository's pre-revprop-change hook script”, and basically verifies that the user attempting the property
changes is our syncuser user. If so, the change is allowed; otherwise, it is denied.

Example 5.2. Mirror repository's pre-revprop-change hook script

#!/bin/sh
USER="53"
if ["SUSER" = "syncuser"]; then exit 0; fi

echo "Only the syncuser user may change revision properties" >&2

exit 1

That covers revision property changes. Now we need to ensure that only the syncuser user is permitted to
commit new revisions to the repository. We do this using a start-commit hook script such as the one in Ex-
ample 5.3, “Mirror repository's start-commit hook script”.

Example 5.3. Mirror repository's start-commit hook script

#!/bin/sh
USER="S$2"
if ["SUSER" = "syncuser"]; then exit 0; fi

echo "Only the syncuser user may commit new revisions" >&2

exit 1

After installing our hook scripts and ensuring that they are executable by the Subversion server, we're finished
with the setup of the mirror repository. Now, we get to actually do the mirroring.

The first thing we need to do with svnsync is to register in our target repository the fact that it will be a mirror
of the source repository. We do this using the svnsync initialize subcommand. The URLs we provide point
to the root directories of the target and source repositories, respectively. In Subversion 1.4, this is required—
only full mirroring of repositories is permitted. Beginning with Subversion 1.5, though, you can use svnsync to
mirror only some subtree of the repository, too.

186

Repository Administration

$ svnsync help init

initialize (init): usage: svnsync initialize DEST URL SOURCE URL

Initialize a destination repository for synchronization from

another repository.

$ svnsync initialize http://svn.example.com/svn-mirror \
http://svnbook.googlecode.com/svn \
—-—sync-username syncuser -—--sync-password syncpass

Copied properties for revision 0 (svn:sync-* properties skipped).

NOTE: Normalized svn:* properties to LF line endings (1 rev-props, 0 node-props).

$

Our target repository will now remember that it is a mirror of the public Subversion source code repository.
Notice that we provided a username and password as arguments to svnsync—that was required by the pre-
revprop-change hook on our mirror repository.

In Subversion 1.4, the values given to svnsync's --username and --password com-

/ mand-line options were used for authentication against both the source and destination repos-
itories. This caused problems when a user's credentials weren't exactly the same for both repos-
itories, especially when running in noninteractive mode (with the --non-interactive op-
tion). This was fixed in Subversion 1.5 with the introduction of two new pairs of options. Use
--source-username and --source-password to provide authentication credentials for
the source repository; use --sync-username and --sync-password to provide credentials
for the destination repository. (The old --username and --password options still exist for
compatibility, but we advise against using them.)

And now comes the fun part. With a single subcommand, we can tell svnsync to copy all the as-yet-unmir-
rored revisions from the source repository to the target.'> The svnsync synchronize subcommand will peek
into the special revision properties previously stored on the target repository and determine how much of the
source repository has been previously mirrored—in this case, the most recently mirrored revision is ro. Then
it will query the source repository and determine what the latest revision in that repository is. Finally, it asks
the source repository's server to start replaying all the revisions between o0 and that latest revision. As svnsync
gets the resultant response from the source repository's server, it begins forwarding those revisions to the target
repository's server as new commits.

$ svnsync help synchronize

synchronize (sync): usage: svnsync synchronize DEST URL [SOURCE URL]

Transfer all pending revisions to the destination from the source

with which it was initialized.

$ svnsync synchronize http://svn.example.com/svn-mirror \
http://svnbook.googlecode.com/svn

Committed revision 1.

Copied properties for revision 1.

Committed revision 2.

13Be forewarned that while it will take only a few seconds for the average reader to parse this paragraph and the sample output that follows it, the
actual time required to complete such a mirroring operation is, shall we say, quite a bit longer.

187

Repository Administration

Copied properties for revision 2.
Transmitting file data .
Committed revision 3.

Copied properties for revision 3.

Transmitting file data .

Committed revision 4063.

Copied properties for revision 4063.
Transmitting file data .

Committed revision 4064.

Copied properties for revision 4064.
Transmitting file data
Committed revision 4065.

Copied properties for revision 4065.

$

Of particular interest here is that for each mirrored revision, there is first a commit of that revision to the target

repository, and then property changes follow. This two-phase replication is required because the initial commit
is performed by (and attributed to) the user syncuser and is datestamped with the time as of that revision's

creation. svnsync has to follow up with an immediate series of property modifications that copy into the target

repository all the original revision properties found for that revision in the source repository, which also has the

effect of fixing the author and datestamp of the revision to match that of the source repository.

Also noteworthy is that svnsyne performs careful bookkeeping that allows it to be safely interrupted and restart-

ed without ruining the integrity of the mirrored data. If a network glitch occurs while mirroring a repository,

simply repeat the svnsync synchronize command, and it will happily pick up right where it left off. In fact, as

new revisions appear in the source repository, this is exactly what you do to keep your mirror up to date.

As part of its bookkeeping, svnsync records in the mirror repository the URL with which the
Q mirror was initialized. Because of this, invocations of svnsynec which follow the initialization
step do not require that you provide the source URL on the command line again. However, for
security purposes, we recommend that you continue to do so. Depending on how it is deployed,
it may not be safe for svnsync to trust the source URL which it retrieves from the mirror

repository, and from which it pulls versioned data.

svnsync Bookkeeping

svnsync needs to be able to set and modify revision properties on the mirror repository because those
properties are part of the data it is tasked with mirroring. As those properties change in the source reposi-
tory, those changes need to be reflected in the mirror repository, too. But svnsync also uses a set of custom
revision properties—stored in revision o of the mirror repository—for its own internal bookkeeping. These
properties contain information such as the URL and UUID of the source repository, plus some additional
state-tracking information.

One of those pieces of state-tracking information is a flag that essentially just means “there's a synchroniza-
tion in progress right now.” This is used to prevent multiple svnsyne processes from colliding with each
other while trying to mirror data to the same destination repository. Now, generally you won't need to pay
any attention whatsoever to any of these special properties (all of which begin with the prefix svn: sync-
). Occasionally, though, if a synchronization fails unexpectedly, Subversion never has a chance to remove
this particular state flag. This causes all future synchronization attempts to fail because it appears that a

188

Repository Administration

synchronization is still in progress when, in fact, none is. Fortunately, recovering from this situation is easy
to do. In Subversion 1.7, you can use the newly introduced --steal-1ock option with svnsync's com-
mands. In previous Subversion versions, you need only to remove the svn:sync-1lock property which
serves as this flag from revision 0 of the mirror repository:

$ svn propdel --revprop -r0 svn:sync-lock http://svn.example.com/svn-mirror
property 'svn:sync-lock' deleted from repository revision 0

$

Also, svnsync stores the source repository URL provided at mirror initialization time in a bookkeep-
ing property on the mirror repository. Future synchronization operations against that mirror which omit
the source URL at the command line will consult the special svn:sync-from-url property stored on
the mirror itself to know where to synchronize from. This value is used literally by the synchronization
process, though. Be wary of using non-fully-qualified domain names (such as referring to svnbook . red-
bean . com as simply svnbook because that happens to work when you are connected directly to the red-
bean . com network), domain names which don't resolve or resolve differently depending on where you
happen to be operating from, or IP addresses (which can change over time). But here again, if you need
an existing mirror to start referring to a different URL for the same source repository, you can change the
bookkeeping property which houses that information. Users of Subversion 1.7 or better can use svnsync
init --allow-non-empty to reinitialize their mirrors with new source URL:

$ svnsync initialize --allow-non-empty http://svn.example.com/svn-mirror \
NEW-SOURCE-URL
Copied properties for revision 4065.

$

If you are running an older version of Subversion, you'll need to manually tweak the svn:sync-from-
url bookkeeping property:

$ svn propset —--revprop -r0 svn:sync-from-url NEW-SOURCE-URL \
http://svn.example.com/svn-mirror
property 'svn:sync-from-url' set on repository revision 0

$

Another interesting thing about these special bookkeeping properties is that svnsynec will not attempt to
mirror any of those properties when they are found in the source repository. The reason is probably obvi-
ous, but basically boils down to svnsynec not being able to distinguish the special properties it has merely
copied from the source repository from those it needs to consult and maintain for its own bookkeeping
needs. This situation could occur if, for example, you were maintaining a mirror of a mirror of a third
repository. When svnsync sees its own special properties in revision o of the source repository, it simply
ignores them.

An svnsync info subcommand was added in Subversion 1.6 to easily display the special bookkeeping
properties in the destination repository.

$ svnsync help info

info: usage: svnsync info DEST URL

189

Repository Administration

Print information about the synchronization destination repository
located at DEST URL.

$ svnsync info http://svn.example.com/svn-mirror

Source URL: http://svnbook.googlecode.com/svn

Source Repository UUID: 931749d0-5854-0410-9456-f14bed4d6b398
Last Merged Revision: 4065

$

There is, however, one bit of inelegance in the process. Because Subversion revision properties can be changed
at any time throughout the lifetime of the repository, and because they don't leave an audit trail that indicates
when they were changed, replication processes have to pay special attention to them. If you've already mirrored
the first 15 revisions of a repository and someone then changes a revision property on revision 12, svnsync won't
know to go back and patch up its copy of revision 12. You'll need to tell it to do so manually by using (or with
some additional tooling around) the svnsync copy-revprops subcommand, which simply rereplicates all the
revision properties for a particular revision or range thereof.

$ svnsync help copy-revprops

COpy-revprops: usage:

1. svnsync copy-revprops DEST URL [SOURCE URL]
2. svnsync copy-revprops DEST URL REV[:REVZ]

$ svnsync copy-revprops http://svn.example.com/svn-mirror 12
Copied properties for revision 12.

$

That's repository replication via svnsync in a nutshell. You'll likely want some automation around such a
process. For example, while our example was a pull-and-push setup, you might wish to have your primary repos-
itory push changes to one or more blessed mirrors as part of its post-commit and post-revprop-change hook
implementations. This would enable the mirror to be up to date in as near to real time as is likely possible.

Partial replication with svnsync

svnsync isn't limited to full copies of everything which lives in a repository. It can handle various shades of
partial replication, too. For example, while it isn't very commonplace to do so, svnsyne does gracefully mirror
repositories in which the user as whom it authenticates has only partial read access. It simply copies only the
bits of the repository that it is permitted to see. Obviously, such a mirror is not useful as a backup solution.

As of Subversion 1.5, svnsyne also has the ability to mirror a subset of a repository rather than the whole thing.
The process of setting up and maintaining such a mirror is exactly the same as when mirroring a whole repository,
except that instead of specifying the source repository's root URL when running svnsynec init, you specify the
URL of some subdirectory within that repository. Synchronization to that mirror will now copy only the bits that
changed under that source repository subdirectory. There are some limitations to this support, though. First,
you can't mirror multiple disjoint subdirectories of the source repository into a single mirror repository—you'd
need to instead mirror some parent directory that is common to both. Second, the filtering logic is entirely path-
based, so if the subdirectory you are mirroring was renamed at some point in the past, your mirror would contain
only the revisions since the directory appeared at the URL you specified. And likewise, if the source subdirectory

190

Repository Administration

is renamed in the future, your synchronization processes will stop mirroring data at the point that the source
URL you specified is no longer valid.

A quick trick for mirror creation

We mentioned previously the cost of setting up an initial mirror of an existing repository. For many folks, the
sheer cost of transmitting thousands—or millions—of revisions of history to a new mirror repository via svnsync
is a show-stopper. Fortunately, Subversion 1.7 provides a workaround by way of a new --allow-non-empty
option to svnsync initialize. This option allows you to initialize one repository as a mirror of another while
bypassing the verification that the to-be-initialized mirror has no version history present in it. Per our previous
warnings about the sensitivity of this whole replication process, you should rightly discern that this is an option
to be used only with great caution. But it's wonderfully handy when you have administrative access to the source
repository, where you can simply make a physical copy of the repository and then initialize that copy as a new
mirror:

$ svnadmin hotcopy /path/to/repos /path/to/mirror-repos
S ##4 create /path/to/mirror-repos/hooks/pre-revprop-change
$ svnsync initialize file:///path/to/mirror-repos \
file:///path/to/repos
svnsync: E000022: Destination repository already contains revision history; co
nsider using --allow-non-empty if the repository's revisions are known to mirr
or their respective revisions in the source repository
$ svnsync initialize --allow-non-empty file:///path/to/mirror-repos \
file:///path/to/repos
Copied properties for revision 32042.

$

Admins who are running a version of Subversion prior to 1.7 (and thus do not have access to svnsync initialize's
--allow-non-empty feature) can accomplish effectively the same thing that that feature does through careful
manipulation of the ro revision properties on the copy of the repository which is slated to become a mirror of
the original. Use svnadmin setrevprop to create the same bookkeeping properties that svnsync would have
created there.

Replication wrap-up

We've discussed a couple of ways to replicate revision history from one repository to another. So let's look now
at the user end of these operations. How does replication and the various situations which call for it affect Sub-
version clients?

As far as user interaction with repositories and mirrors goes, it is possible to have a single working copy that
interacts with both, but you'll have to jump through some hoops to make it happen. First, you need to ensure
that both the primary and mirror repositories have the same repository UUID (which is not the case by default).
See the section called “Managing Repository UUIDs” later in this chapter for more about this.

Once the two repositories have the same UUID, you can use svn relocate to point your working copy to whichev-
er of the repositories you wish to operate against, a process that is described in svn relocate in Chapter 9, Sub-
version Complete Reference. There is a possible danger here, though, in that if the primary and mirror reposi-
tories aren't in close synchronization, a working copy up to date with, and pointing to, the primary repository
will, if relocated to point to an out-of-date mirror, become confused about the apparent sudden loss of revisions
it fully expects to be present, and it will throw errors to that effect. If this occurs, you can relocate your working

191

Repository Administration

copy back to the primary repository and then either wait until the mirror repository is up to date, or backdate
your working copy to a revision you know is present in the sync repository, and then retry the relocation.

Finally, be aware that the revision-based replication provided by svnsync is only that—replication of revisions.
Only the kinds of information carried by the Subversion repository dump file format are available for replication.
As such, tools such as svnsync (and svnrdump, which we discuss in the section called “Repository data mi-
gration using svnrdump”) are limited in ways similar to that of the repository dump stream. They do not include
in their replicated information such things as the hook implementations, repository or server configuration data,
uncommitted transactions, or information about user locks on repository paths.

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortunately
rings true with crystalline clarity—sometimes things go very, very awry. Power outages, network connectivity
dropouts, corrupt RAM, and crashed hard drives are but a taste of the evil that Fate is poised to unleash on even
the most conscientious administrator. And so we arrive at a very important topic—how to make backup copies
of your repository data.

There are two types of backup methods available for Subversion repository administrators—full and incremental.
A full backup of the repository involves squirreling away in one sweeping action all the information required to
fully reconstruct that repository in the event of a catastrophe. Usually, it means, quite literally, the duplication of
the entire repository directory (which includes either a Berkeley DB or FSFS environment). Incremental backups
are lesser things: backups of only the portion of the repository data that has changed since the previous backup.

As far as full backups go, the naive approach might seem like a sane one, but unless you temporarily disable
all other access to your repository, simply doing a recursive directory copy runs the risk of generating a faulty
backup. In the case of Berkeley DB, the documentation describes a certain order in which database files can
be copied that will guarantee a valid backup copy. A similar ordering exists for FSFS data. But you don't have
to implement these algorithms yourself, because the Subversion development team has already done so. The
svnadmin hotcopy command takes care of the minutia involved in making a hot backup of your repository.
And its invocation is as trivial as the Unix c¢p or Windows copy operations:

$ svnadmin hotcopy /var/svn/repos /var/svn/repos-backup

The resultant backup is a fully functional Subversion repository, able to be dropped in as a replacement for your
live repository should something go horribly wrong.

When making copies of a Berkeley DB repository, you can even instruct svnadmin hotcopy to purge any un-
used Berkeley DB logfiles (see the section called “Purging unused Berkeley DB logfiles”) from the original repos-
itory upon completion of the copy. Simply provide the --clean-1ogs option on the command line.

$ svnadmin hotcopy --clean-logs /var/svn/bdb-repos /var/svn/bdb-repos-backup

Additional tooling around this command is available, too. The tools/backup/ directory of the Subversion
source distribution holds the hot-backup.py script. This script adds a bit of backup management atop svnad-
min hotcopy, allowing you to keep only the most recent configured number of backups of each repository. It
will automatically manage the names of the backed-up repository directories to avoid collisions with previous
backups and will “rotate off” older backups, deleting them so that only the most recent ones remain. Even if you
also have an incremental backup, you might want to run this program on a regular basis. For example, you might

192

Repository Administration

consider using hot-backup.py from a program scheduler (such as cron on Unix systems), which can cause it
to run nightly (or at whatever granularity of time you deem safe).

Some administrators use a different backup mechanism built around generating and storing repository dump
data. We described in the section called “Migrating Repository Data Elsewhere” how to use svnadmin dump
with the --incremental option to perform an incremental backup of a given revision or range of revisions.
And of course, you can achieve a full backup variation of this by omitting the --incremental option to that
command. There is some value in these methods, in that the format of your backed-up information is flexible—
it's not tied to a particular platform, versioned filesystem type, or release of Subversion or Berkeley DB. But that
flexibility comes at a cost, namely that restoring that data can take a long time—longer with each new revision
committed to your repository. Also, as is the case with so many of the various backup methods, revision property
changes that are made to already backed-up revisions won't get picked up by a nonoverlapping, incremental
dump generation. For these reasons, we recommend against relying solely on dump-based backup approaches.

As you can see, each of the various backup types and methods has its advantages and disadvantages. The easiest
is by far the full hot backup, which will always result in a perfect working replica of your repository. Should
something bad happen to your live repository, you can restore from the backup with a simple recursive directory
copy. Unfortunately, if you are maintaining multiple backups of your repository, these full copies will each eat up
just as much disk space as your live repository. Incremental backups, by contrast, tend to be quicker to generate
and smaller to store. But the restoration process can be a pain, often involving applying multiple incremental
backups. And other methods have their own peculiarities. Administrators need to find the balance between the
cost of making the backup and the cost of restoring it.

The svnsync program (see the section called “Repository Replication”) actually provides a rather handy mid-
dle-ground approach. If you are regularly synchronizing a read-only mirror with your main repository, in a pinch
your read-only mirror is probably a good candidate for replacing that main repository if it falls over. The primary
disadvantage of this method is that only the versioned repository data gets synchronized—repository configura-
tion files, user-specified repository path locks, and other items that might live in the physical repository directory
but not inside the repository's virtual versioned filesystem are not handled by svnsynec.

In any backup scenario, repository administrators need to be aware of how modifications to unversioned revision
properties affect their backups. Since these changes do not themselves generate new revisions, they will not trig-
ger post-commit hooks, and may not even trigger the pre-revprop-change and post-revprop-change hooks.'# And
since you can change revision properties without respect to chronological order—you can change any revision's
properties at any time—an incremental backup of the latest few revisions might not catch a property modifica-
tion to a revision that was included as part of a previous backup.

Generally speaking, only the truly paranoid would need to back up their entire repository, say, every time a
commit occurred. However, assuming that a given repository has some other redundancy mechanism in place
with relatively fine granularity (such as per-commit emails or incremental dumps), a hot backup of the database
might be something that a repository administrator would want to include as part of a system-wide nightly
backup. It's your data—protect it as much as you'd like.

Often, the best approach to repository backups is a diversified one that leverages combinations of the methods
described here. The Subversion developers, for example, back up the Subversion source code repository night-
ly using hot-backup.py and an off-site rsynec of those full backups; keep multiple archives of all the commit
and property change notification emails; and have repository mirrors maintained by various volunteers using
svnsync. Your solution might be similar, but should be catered to your needs and that delicate balance of con-
venience with paranoia. And whatever you do, validate your backups from time to time—what good is a spare

14

svnadmin setlog can be called in a way that bypasses the hook interface altogether.

193

Repository Administration

tire that has a hole in it? While all of this might not save your hardware from the iron fist of Fate,' it should
certainly help you recover from those trying times.

Managing Repository UUIDs

Subversion repositories have a universally unique identifier (UUID) associated with them. This is used by Sub-
version clients to verify the identity of a repository when other forms of verification aren't good enough (such as
checking the repository URL, which can change over time). Most Subversion repository administrators rarely, if
ever, need to think about repository UUIDs as anything more than a trivial implementation detail of Subversion.
Sometimes, however, there is cause for attention to this detail.

As a general rule, you want the UUIDs of your live repositories to be unique. That is, after all, the point of having
UUIDs. But there are times when you want the repository UUIDs of two repositories to be exactly the same. For
example, if you make a copy of a repository for backup purposes, you want the backup to be a perfect replica of
the original so that, in the event that you have to restore that backup and replace the live repository, users don't
suddenly see what looks like a different repository. When dumping and loading repository history (as described
earlier in the section called “Migrating Repository Data Elsewhere”), you get to decide whether to apply the
UUID encapsulated in the data dump stream to the repository in which you are loading the data. The particular
circumstance will dictate the correct behavior.

There are a couple of ways to set (or reset) a repository's UUID, should you need to. As of Subversion 1.5, this is
as simple as using the svnadmin setuuid command. If you provide this subcommand with an explicit UUID, it
will validate that the UUID is well-formed and then set the repository UUID to that value. If you omit the UUID,
a brand-new UUID will be generated for your repository.

$ svnlook uuid /var/svn/repos

cf2b9d22-acb5-11dc-bc8c-05e83cebdbec

$ svnadmin setuuid /var/svn/repos # generate a new UUID

$ svnlook uuid /var/svn/repos

3c3c38fe-accO0-1ldc-acbc-1b37fflc8e7c

$ svnadmin setuuid /var/svn/repos \
cf2b9d22-acb5-11dc-bc8c-05e83ce5dbec # restore the old UUID

$ svnlook uuid /var/svn/repos

cf2b9d22-acb5-11dc-bc8c-05e83cebdbec

$

For folks using versions of Subversion earlier than 1.5, these tasks are a little more complicated. You can explicitly
set a repository's UUID by piping a repository dump file stub that carries the new UUID specification through
svnadmin load --force-uuid REPOS-PATH.

$ svnadmin load --force-uuid /var/svn/repos <<EOF

SVN-fs-dump-format-version: 2

UUID: cf2b9d22-acb5-11dc-bc8c-05e83ce5dbec
EOF

$ svnlook uuid /var/svn/repos
cf2b9d22-acb5-11dc-bc8c-05e83cebdbec

$

'5You know—the collective term for all of her “fickle fingers.”

194

Repository Administration

Having older versions of Subversion generate a brand-new UUID is not quite as simple to do, though. Your best
bet here is to find some other way to generate a UUID, and then explicitly set the repository's UUID to that value.

Moving and Removing Repositories

Subversion repository data is wholly contained within the repository directory. As such, you can move a Sub-
version repository to some other location on disk, rename a repository, copy a repository, or delete a repository
altogether using the tools provided by your operating system for manipulating directories—mv, cp -a, and rm
-r on Unix platforms; copy, move, and rmdir /s /q on Windows; vast numbers of mouse and menu gyrations
in various graphical file explorer applications, and so on.

Of course, there's often still more to be done when trying to cleanly affect changes such as this. For example, you
might need to update your Subversion server configuration to point to the new location of a relocated repository
or to remove configuration bits for a now-deleted repository. If you have automated processes that publish in-
formation from or about your repositories, they may need to be updated. Hook scripts might need to be recon-
figured. Users may need to be notified. The list can go on indefinitely, or at least to the extent that you've built
processes and procedures around your Subversion repository.

In the case of a copied repository, you should also consider the fact that Subversion uses repository UUIDs to
distinguish repositories. If you copy a Subversion repository using a typical shell recursive copy command, you'll
wind up with two repositories that are identical in every way—including their UUIDs. In some circumstances,
this might be desirable. But in the instances where it is not, you'll need to generate a new UUID for one of these
identical repositories. See the section called “Managing Repository UUIDs” for more about managing repository
UUIDs.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion repositories.
We introduced you to the various tools that will assist you with this task. Throughout the chapter, we noted
common administration pitfalls and offered suggestions for avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finally, how to make it
available over a network. The next chapter is all about networking.

195

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on which the
repository resides using URLs carrying the £ile: // scheme. But the typical Subversion setup involves a single
server machine being accessed from clients on computers all over the office—or, perhaps, all over the world.

This chapter describes how to get your Subversion repository exposed outside its host machine for use by remote
clients. We will cover Subversion's currently available server mechanisms, discussing the configuration and use
of each. After reading this chapter, you should be able to decide which networking setup is right for your needs,
as well as understand how to enable such a setup on your host computer.

Overview

Subversion was designed with an abstract repository access layer. This means that a repository can be program-
matically accessed by any sort of server process, and the client “repository access” API allows programmers to
write plug-ins that speak relevant network protocols. In theory, Subversion can use an infinite number of net-
work implementations. In practice, there are only two Subversion servers in widespread use today.

Apache is an extremely popular web server; using the mod_dav_svn module, Apache can access a reposito-
ry and make it available to clients via the WebDAV/DeltaV protocol, which is an extension of HTTP. Because
Apache is an extremely extensible server, it provides a number of features “for free,” such as encrypted SSL
communication, logging, integration with a number of third-party authentication systems, and limited built-in
web browsing of repositories.

In the other corner is svnserve: a small, lightweight server program that speaks a custom protocol with clients.
Because its protocol is explicitly designed for Subversion and is stateful (unlike HTTP), it provides significantly
faster network operations—but at the cost of some features as well. While it can use SASL to provide a variety
of authentication and encryption options, it has no logging or built-in web browsing. It is, however, extremely
easy to set up and is often the best option for small teams just starting out with Subversion.

The network protocol which svnserve speaks may also be tunneled over an SSH connection. This deployment
option for svnserve differs quite a bit in features from a traditional svnserve deployment. SSH is used to
encrypt all communication. SSH is also used exclusively to authenticate, so real system accounts are required on
the server host (unlike vanilla svnserve, which has its own private user accounts). Finally, because this setup
requires that each user spawn a private, temporary svnserve process, it's equivalent (from a permissions point
of view) to allowing a group of local users to all access the repository via file:// URLs. Path-based access
control has no meaning, since each user is accessing the repository database files directly.

Table 6.1, “Comparison of subversion server options” provides a quick summary of the three typical server de-
ployments.

Table 6.1. Comparison of subversion server options

Feature Apache + | svnserve svnserve over SSH

mod_dav_svn

Authentication options

HTTP Basic or Digest
auth, X.509 certificates,

CRAM-MD5 by default;
LDAP, NTLM, or any oth-

SSH

196

Server Configuration

Feature

Apache +
mod_dav_svn

svnserve

svnserve over SSH

LDAP, NTLM, or any oth-
er mechanism available to
Apache httpd

er mechanism available to
SASL

User account options

Private “users” file, or
other mechanisms avail-
able to Apache httpd
(LDAP, SQL, etc.)

Private “users” file, or
other mechanisms avail-
able to SASL (LDAP, SQL,
ete.)

System accounts

Authorization options

Read/write access can be
granted over the whole

Read/write access can be
granted over the whole

Read/write access only
grantable over the whole

repository, or specified | repository, or specified | repository
per path per path

Encryption Available via optional SSL | Available via optional | Inherent in SSH connec-
(https) SASL features tion

Logging High-level operational | High-level operational | High-level operational
logging of Subversion op- | logging only logging only
erations plus detailed log-
ging at the per-HTTP-re-
quest level

Interoperability Accessible by other Web- | Talks only to svn clients | Talks only to svn clients
DAV clients

Web viewing

Limited built-in support,
or via third-party tools
such as ViewVC

Only via third-party tools
such as ViewVC

Only via third-party tools
such as ViewVC

Master-slave server repli-

Transparent write-proxy-

Can only create read-only

Can only create read-only

cation ing available from slave to | slave servers slave servers
master
Speed Somewhat slower Somewhat faster Somewhat faster

Initial setup

Somewhat complex

Extremely simple

Moderately simple

Choosing a Server Configuration

So, which server should you use? Which is best?

Obviously, there's no right answer to that question. Every team has different needs, and the different servers
all represent different sets of trade-offs. The Subversion project itself doesn't endorse one server or another, or
consider either server more “official” than another.

Here are some reasons why you might choose one deployment over another, as well as reasons you might not
choose one.

197

Server Configuration

The svnserve Server

Why you might want to use it:
+ Quick and easy to set up.
» Network protocol is stateful and noticeably faster than WebDAV.
« No need to create system accounts on server.
» Password is not passed over the network.
Why you might want to avoid it:

By default, only one authentication method is available, the network protocol is not encrypted, and the
server stores clear text passwords. (All these things can be changed by configuring SASL, but it's a bit
more work to do.)

» No advanced logging facilities.

+ No built-in web browsing. (You'd have to install a separate web server and repository browsing software
to add this.)

svnserve over SSH

Why you might want to use it:
+ The network protocol is stateful and noticeably faster than WebDAV.
« You can take advantage of existing SSH accounts and user infrastructure.
« All network traffic is encrypted.
Why you might want to avoid it:
+ Only one choice of authentication method is available.
» No advanced logging facilities.
« It requires users to be in the same system group, or use a shared SSH key.

« If used improperly, it can lead to file permission problems.

The Apache HTTP Server

Why you might want to use it:
« It allows Subversion to use any of the numerous authentication systems already integrated with Apache.
« There is no need to create system accounts on the server.
« Full Apache logging is available.

+ Network traffic can be encrypted via SSL.

198

Server Configuration

« HTTP(S) can usually go through corporate firewalls.
+ Built-in repository browsing is available via web browser.

 The repository can be mounted as a network drive for transparent version control (see the section called
“Autoversioning”).

Why you might want to avoid it:

 Noticeably slower than svnserve, because HTTP is a stateless protocol and requires more network turn-
arounds.

« Initial setup can be complex.

Recommendations

In general, the authors of this book recommend a vanilla svnserve installation for small teams just trying to
get started with a Subversion server; it's the simplest to set up and has the fewest maintenance issues. You can
always switch to a more complex server deployment as your needs change.

Here are some general recommendations and tips, based on years of supporting users:

« If you're trying to set up the simplest possible server for your group, a vanilla svnserve installation is the
easiest, fastest route. Note, however, that your repository data will be transmitted in the clear over the network.
If your deployment is entirely within your company's LAN or VPN, this isn't an issue. If the repository is
exposed to the wide-open Internet, you might want to make sure that either the repository's contents aren't
sensitive (e.g., it contains only open source code), or that you go the extra mile in configuring SASL to encrypt

network communications.

« If you need to integrate with existing legacy identity systems (LDAP, Active Directory, NTLM, X.5009, etc.),
you must use either the Apache-based server or svnserve configured with SASL.

« Ifyou've decided to use either Apache or stock svnserve, create a single svn user on your system and run the
server process as that user. Be sure to make the repository directory wholly owned by the svn user as well.
From a security point of view, this keeps the repository data nicely siloed and protected by operating system
filesystem permissions, changeable by only the Subversion server process itself.

« If you have an existing infrastructure that is heavily based on SSH accounts, and if your users already have
system accounts on your server machine, it makes sense to deploy an svnserve-over-SSH solution. Otherwise,
we don't widely recommend this option to the public. It's generally considered safer to have your users access
the repository via (imaginary) accounts managed by svnserve or Apache, rather than by full-blown system
accounts. If your deep desire for encrypted communication still draws you to this option, we recommend using
Apache with SSL or svnserve with SASL encryption instead.

« Do notbe seduced by the simple idea of having all of your users access a repository directly via file: // URLs.
Even if the repository is readily available to everyone via a network share, this is a bad idea. It removes any
layers of protection between the users and the repository: users can accidentally (or intentionally) corrupt the
repository database, it becomes hard to take the repository offline for inspection or upgrade, and it can lead to
a mess of file permission problems (see the section called “Supporting Multiple Repository Access Methods”).
Note that this is also one of the reasons we warn against accessing repositories via svn+ssh:// URLs—from
a security standpoint, it's effectively the same as local users accessing via file://, and it can entail all the
same problems if the administrator isn't careful.

199

Server Configuration

svnserve, a Custom Server

The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP using a custom, state-
ful protocol. Clients contact an svnserve server by using URLs that begin with the svn:// or svn+ssh://
scheme. This section will explain the different ways of running svnserve, how clients authenticate themselves
to the server, and how to configure appropriate access control to your repositories.

Invoking the Server

There are a few different ways to run the svnserve program:

« Run svnserve as a standalone daemon, listening for requests.

« Have the Unix inetd daemon temporarily spawn svnserve whenever a request comes in on a certain port.
« Have SSH invoke a temporary svnserve over an encrypted tunnel.

« Run svnserve as a Microsoft Windows service.

« Run svnserve as a launchd job.

The following sections will cover in detail these various deployment options for svnserve.

svnserve as daemon

The easiest option is to run svnserve as a standalone “daemon” process. Use the -d option for this:

$ svnserve -d

S # svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --1isten-port and --1isten-host options to
customize the exact port and hostname to “bind” to.

Once we successfully start svnserve as explained previously, it makes every repository on your system avail-
able to the network. A client needs to specify an absolute path in the repository URL. For example, if a reposi-
tory is located at /var/svn/projectl, a client would reach it via svn://host.example.com/var/svn/
projectl. To increase security, you can pass the -r option to svnserve, which restricts it to exporting only
repositories below that path. For example:

$ svnserve -d -r /var/svn

Using the - r option effectively modifies the location that the program treats as the root of the remote filesystem
space. Clients then use URLs that have that path portion removed from them, leaving much shorter (and much
less revealing) URLs:

$ svn checkout svn://host.example.com/projectl

200

Server Configuration

svnserve via inetd

If you want inetd to launch the process, you need to pass the -i (--inetd) option. In the following example,
we've shown the output from running svnserve -i at the command line, but note that this isn't how you ac-
tually start the daemon; see the paragraphs following the example for how to configure inetd to start svnserve.

$ svnserve -1
(success (2 2 () (edit-pipeline svndiffl absent-entries commit-revprops d\

epth log-revprops atomic-revprops partial-replay)))

When invoked with the --inetd option, svnserve attempts to speak with a Subversion client via stdin and
stdout using a custom protocol. This is the standard behavior for a program being run via inetd. The IANA has
reserved port 3690 for the Subversion protocol, so on a Unix-like system you can add linesto /etc/services
such as these (if they don't already exist):

svn 3690/tcp # Subversion
svn 3690/udp # Subversion

If your system is using a classic Unix-like inetd daemon, you can add this lineto /etc/inetd.conf:

svn stream tcp nowait svnowner /usr/bin/svnserve svnserve -—i

Make sure “svnowner” is a user that has appropriate permissions to access your repositories. Now, when a client
connection comes into your server on port 3690, inetd will spawn an svnserve process to service it. Of course,
you may also want to add - r to the configuration line as well, to restrict which repositories are exported.

svnserve over a tunnel

Another way to invoke svnserve is in tunnel mode, using the -t option. This mode assumes that a remote-ser-
vice program such as rsh or ssh has successfully authenticated a user and is now invoking a private svnserve
process as that user. (Note that you, the user, will rarely, if ever, have reason to invoke svnserve with the -
t at the command line; instead, the SSH daemon does so for you.) The svnserve program behaves normally
(communicating via stdin and stdout) and assumes that the traffic is being automatically redirected over
some sort of tunnel back to the client. When svnserve is invoked by a tunnel agent like this, be sure that the
authenticated user has full read and write access to the repository database files. It's essentially the same as a
local user accessing the repository via file:// URLs.

This option is described in much more detail later in this chapter in the section called “Tunneling over SSH”.

svnserve as a Windows service

If your Windows system is a descendant of Windows NT (Windows 2000 or newer), you can run Ssvnserve as
a standard Windows service. This is typically a much nicer experience than running it as a standalone daemon
with the --daemon (-d) option. Using daemon mode requires launching a console, typing a command, and then
leaving the console window running indefinitely. A Windows service, however, runs in the background, can start
at boot time automatically, and can be started and stopped using the same consistent administration interface
as other Windows services.

You'll need to define the new service using the command-line tool SC.EXE. Much like the inetd configuration
line, you must specify an exact invocation of svnserve for Windows to run at startup time:

201

Server Configuration

C:\> sc create svn
binpath= "C:\svn\bin\svnserve.exe --service -r C:\repos"
displayname= "Subversion Server"
depend= Tcpip

start= auto

This defines a new Windows service named svn which executes a particular svnserve.exe command when
started (in this case, rooted at C : \ repos). There are a number of caveats in the prior example, however.

First, notice that the svnserve.exe program must always be invoked with the --service option. Any other
options to svnserve must then be specified on the same line, but you cannot add conflicting options such as —-
daemon (-d), -—tunnel, or -—inetd (-1i). Options such as -r or --1isten-port are fine, though. Second,
be careful about spaces when invoking the SC.EXE command: the key= value patterns must have no spaces
between key= and must have exactly one space before the value. Lastly, be careful about spaces in your com-
mand line to be invoked. If a directory name contains spaces (or other characters that need escaping), place the
entire inner value of binpath in double quotes, by escaping them:

C:\> sc create svn
binpath= "\"C:\program files\svn\bin\svnserve.exe\" --service -r C:\repos"
displayname= "Subversion Server"
depend= Tcpip

start= auto

Also note that the word binpath is misleading—its value is a command line, not the path to an executable.
That's why you need to surround it with quotes if it contains embedded spaces.

Once the service is defined, it can be stopped, started, or queried using standard GUI tools (the Services admin-
istrative control panel), or at the command line:

C:\> net stop svn

C:\> net start svn

The service can also be uninstalled (i.e., undefined) by deleting its definition: sc delete swvn. Just be sure
to stop the service first! The SC.EXE program has many other subcommands and options; run sec /? to learn
more about it.

svnserve as a launchd job

Mac OS X (10.4 and higher) uses launchd to manage processes (including daemons) both system-wide and
per-user. A launchd job is specified by parameters in an XML property list file, and the launchetl command
is used to manage the lifecycle of those jobs.

When configured to run as a launchd job, svnserve is automatically launched on demand whenever incoming
Subversion svn: // network traffic needs to be handled. This is far more convenient than a configuration which
requires you to manually invoke svnserve as a long-running background process.

To configure svnserve as a launchd job, first create a job definition file named /Library/LaunchDae-
mons/org.apache.subversion.svnserve.plist. Example 6.1, “A sample svnserve launchd job defini-

tion” provides an example of such a file.

202

Server Configuration

Example 6.1. A sample svnserve launchd job definition

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTID PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>org.apache.subversion.svnserve</string>
<key>ServiceDescription</key>
<string>Host Subversion repositories using svn:// scheme</string>
<key>ProgramArguments</key>
<array>
<string>/usr/bin/svnserve</string>
<string>--inetd</string>
<string>--root=/var/svn</string>
</array>
<key>UserName</key>
<string>svn</string>
<key>GroupName</key>
<string>svn</string>
<key>inetdCompatibility</key>
<dict>
<key>Wait</key>
<false/>
</dict>
<key>Sockets</key>
<dict>
<key>Listeners</key>
<array>
<dict>
<key>SockServiceName</key>
<string>svn</string>
<key>Bonjour</key>
<true/>
</dict>
</array>
</dict>
</dict>
</plist>

The launchd system can be somewhat challenging to learn. Fortunately, documentation ex-
ists for the commands described in this section. For example, run man launchd from the
command line to see the manual page for launchd itself, man launchd.plist toread about
the job definition format, etc.

Once your job definition file is created, you can activate the job using launchctl load:

$ sudo launchctl load \

-w /Library/LaunchDaemons/org.apache.subversion.svnserve.plist

203

Server Configuration

To be clear, this action doesn't actually launch svnserve yet. It simply tells launchd how to fire up svnserve
when incoming networking traffic arrives on the svn network port; it will be terminated it after the traffic has
been handled.

Because we want svnserve to be a system-wide daemon process, we need to use sudo to
<> manage this job as an administrator. Note also that the UserName and GroupName keys in

the definition file are optional—if omitted, the job will run as the user who loaded the job.

Deactivating the job is just as easy to do—use launchctl unload:

$ sudo launchctl unload \

-w /Library/LaunchDaemons/org.apache.subversion.svnserve.plist

launchectl also provides a way for you to query the status of jobs. If the job is loaded, there will be line which
matches the Labe1 specified in the job definition file:

$ sudo launchctl list | grep org.apache.subversion.svnserve

= 0 org.apache.subversion.svnserve

$

Built-in Authentication and Authorization

When a client connects to an svnserve process, the following things happen:
« The client selects a specific repository.

+ The server processes the repository's conf/svnserve.conf file and begins to enforce any authentication
and authorization policies it describes.

« Depending on the defined policies, one of the following may occur:

» The client may be allowed to make requests anonymously, without ever receiving an authentication chal-
lenge.

« The client may be challenged for authentication at any time.

« If operating in tunnel mode, the client will declare itself to be already externally authenticated (typically
by SSH).

The svnserve server, by default, knows only how to send a CRAM-MD5' authentication challenge. In essence,
the server sends a small amount of data to the client. The client uses the MDj5 hash algorithm to create a finger-
print of the data and password combined, and then sends the fingerprint as a response. The server performs
the same computation with the stored password to verify that the result is identical. At no point does the actual
password travel over the network.

If your svnserve server was built with SASL support, it not only knows how to send CRAM-MD5 challenges,
but also likely knows a whole host of other authentication mechanisms. See the section called “Using svnserve
with SASL” later in this chapter to learn how to configure SASL authentication and encryption.

See RFC 2195.

204

Server Configuration

It's also possible, of course, for the client to be externally authenticated via a tunnel agent, such as ssh. In that
case, the server simply examines the user it's running as, and uses this name as the authenticated username. For
more on this, see the later section, the section called “Tunneling over SSH”.

As you've already guessed, a repository's svnserve. conf file is the central mechanism for controlling authen-
tication and authorization policies. The file has the same format as other configuration files (see the section
called “Runtime Configuration Area”): section names are marked by square brackets ([and 1), comments begin
with hashes (#), and each section contains specific variables that can be set (variable = value). Let's walk
through these files and learn how to use them.

Create a users file and realm

For now, the [general] section of svnserve.conf has all the variables you need. Begin by changing the
values of those variables: choose a name for a file that will contain your usernames and passwords and choose
an authentication realm:

[general]
password-db = userfile

realm = example realm

The realmis a name that you define. It tells clients which sort of “authentication namespace” they're connecting
to; the Subversion client displays it in the authentication prompt and uses it as a key (along with the server's
hostname and port) for caching credentials on disk (see the section called “Caching credentials”). The pass-
word-db variable points to a separate file that contains a list of usernames and passwords, using the same fa-
miliar format. For example:

[users]
harry = foopassword

sally = barpassword

The value of password-db can be an absolute or relative path to the users file. For many admins, it's easy
to keep the file right in the conf/ area of the repository, alongside svnserve.conf. On the other hand, it's
possible you may want to have two or more repositories share the same users file; in that case, the file should
probably live in a more public place. The repositories sharing the users file should also be configured to have the
same realm, since the list of users essentially defines an authentication realm. Wherever the file lives, be sure to
set the file's read and write permissions appropriately. If you know which user(s) svnserve will run as, restrict
read access to the users file as necessary.

Set access controls

There are two more variables to set in the svnserve. conf file: they determine what unauthenticated (anony-
mous) and authenticated users are allowed to do. The variables anon-access and auth-access can be set
to the value none, read, or write. Setting the value to none prohibits both reading and writing; read allows
read-only access to the repository, and wri te allows complete read/write access to the repository. For example:

[general]
password-db = userfile

realm = example realm

205

Server Configuration

anonymous users can only read the repository

anon-access = read

authenticated users can both read and write

auth-access = write

The example settings are, in fact, the default values of the variables, should you forget to define them. If you
want to be even more conservative, you can block anonymous access completely:

[general]
password-db = userfile

realm = example realm

anonymous users aren't allowed

anon—access = none

authenticated users can both read and write

auth-access = write

The server process understands not only these “blanket” access controls to the repository, but also finer-grained
access restrictions placed on specific files and directories within the repository. To make use of this feature, you
need to define a file containing more detailed rules, and then set the authz-db variable to point to it:

[general]
password-db = userfile

realm = example realm

Specific access rules for specific locations
authz-db = authzfile

We discuss the syntax of the authzfile file in detail later in this chapter, in the section called “Path-Based
Authorization”. Note that the authz-db variable isn't mutually exclusive with the anon-access and auth-
access variables; if all the variables are defined at once, all of the rules must be satisfied before access is allowed.

Using svnserve with SASL

For many teams, the built-in CRAM-MD5 authentication is all they need from svnserve. However, if your server
(and your Subversion clients) were built with the Cyrus Simple Authentication and Security Layer (SASL) library,
you have a number of authentication and encryption options available to you.

What Is SASL?

The Cyrus Simple Authentication and Security Layer is open source software written by Carnegie Mellon
University. It adds generic authentication and encryption capabilities to any network protocol, and as of
Subversion 1.5 and later, both the svnserve server and svn client know how to make use of this library. It
may or may not be available to you: if you're building Subversion yourself, you'll need to have at least ver-
sion 2.1 of SASL installed on your system, and you'll need to make sure that it's detected during Subversion's

build process. The Subversion command-line client will report the availability of Cyrus SASL when you run

206

Server Configuration

svn --version; if you're using some other Subversion client, you might need to check with the package
maintainer as to whether SASL support was compiled in.

SASL comes with a number of pluggable modules that represent different authentication systems: Kerberos
(GSSAPI), NTLM, One-Time-Passwords (OTP), DIGEST-MD5, LDAP, Secure-Remote-Password (SRP),
and others. Certain mechanisms may or may not be available to you; be sure to check which modules are
provided.

You can download Cyrus SASL (both code and documentation) from http://asg.web.cmu.edu/sasl/sasl-
library.html.

Normally, when a subversion client connects to svnserve, the server sends a greeting that advertises a list of
the capabilities it supports, and the client responds with a similar list of capabilities. If the server is configured
to require authentication, it then sends a challenge that lists the authentication mechanisms available; the client
responds by choosing one of the mechanisms, and then authentication is carried out in some number of round-
trip messages. Even when SASL capabilities aren't present, the client and server inherently know how to use
the CRAM-MDj5 and ANONYMOUS mechanisms (see the section called “Built-in Authentication and Authoriza-
tion”). If server and client were linked against SASL, a number of other authentication mechanisms may also be
available. However, you'll need to explicitly configure SASL on the server side to advertise them.

Authenticating with SASL

To activate specific SASL mechanisms on the server, you'll need to do two things. First, create a [sas1] section

in your repository's svnserve. conf file with an initial key-value pair:

[sasl]

use-sasl = true

Second, create a main SASL configuration file called svn.conf in a place where the SASL library can find it
—typically in the directory where SASL plug-ins are located. You'll have to locate the plug-in directory on your
particular system, such as /usr/1lib/sasl2/ or /etc/sas12/. (Note that this is not the svnserve.conf
file that lives within a repository!)

On a Windows server, you'll also have to edit the system registry (using a tool such as regedit) to tell SASL
where to find things. Create a registry key named [HKEY LOCAL MACHINE\SOFTWARE\Carnegie Mel-
lon\Project Cyrus\SASL Library], and place two keys inside it: a key called SearchPath (whose value
is a path to the directory containing the SASL sas1*.d11 plug-in libraries), and a key called ConfFile (whose
value is a path to the parent directory containing the svn. conf file you created).

Because SASL provides so many different kinds of authentication mechanisms, it would be foolish (and far be-
yond the scope of this book) to try to describe every possible server-side configuration. Instead, we recommend
that you read the documentation supplied in the doc/ subdirectory of the SASL source code. It goes into great
detail about every mechanism and how to configure the server appropriately for each. For the purposes of this
discussion, we'll just demonstrate a simple example of configuring the DIGEST-MD5 mechanism. For example,

if your subversion.conf (or svn.conf) file contains the following:

pwcheck method: auxprop
auxprop plugin: sasldb
sasldb path: /etc/my sasldb

207

http://asg.web.cmu.edu/sasl/sasl-library.html
http://asg.web.cmu.edu/sasl/sasl-library.html

Server Configuration

mech list: DIGEST-MD5

you've told SASL to advertise the DIGEST-MD5 mechanism to clients and to check user passwords against a
private password database located at /etc/my sasldb.Asystem administrator can then use the saslpasswdz2
program to add or modify usernames and passwords in the database:

$ saslpasswd2 -c -f /etc/my sasldb -u realm username

A few words of warning: first, make sure the “realm” argument to saslpasswd2 matches the same realm you've
defined in your repository's svnserve.conf file; if they don't match, authentication will fail. Also, due to a
shortcoming in SASL, the common realm must be a string with no space characters. Finally, if you decide to go
with the standard SASL password database, make sure the svnserve program has read access to the file (and
possibly write access as well, if you're using a mechanism such as OTP).

This is just one simple way of configuring SASL. Many other authentication mechanisms are available, and pass-
words can be stored in other places such as in LDAP or a SQL database. Consult the full SASL documentation
for details.

Remember that if you configure your server to only allow certain SASL authentication mechanisms, this forces
all connecting clients to have SASL support as well. Any Subversion client built without SASL support (which
includes all pre-1.5 clients) will be unable to authenticate. On the one hand, this sort of restriction may be exactly
what you want (“My clients must all use Kerberos!”). However, if you still want non-SASL clients to be able to
authenticate, be sure to advertise the CRAM-MD5 mechanism as an option. All clients are able to use CRAM-
MD5, whether they have SASL capabilities or not.

SASL encryption

SASL is also able to perform data encryption if a particular mechanism supports it. The built-in CRAM-MD5
mechanism doesn't support encryption, but DIGEST-MDj5 does, and mechanisms such as SRP actually require
use of the OpenSSL library. To enable or disable different levels of encryption, you can set two values in your
repository's svnserve. conf file:

[sasl]
use-sasl = true
min-encryption = 128

max-encryption = 256

The min-encryption and max-encryption variables control the level of encryption demanded by the serv-
er. To disable encryption completely, set both values to 0. To enable simple checksumming of data (i.e., prevent
tampering and guarantee data integrity without encryption), set both values to 1. If you wish to allow—but not
require—encryption, set the minimum value to 0, and the maximum value to some bit length. To require en-
cryption unconditionally, set both values to numbers greater than 1. In our previous example, we require clients
to do at least 128-bit encryption, but no more than 256-bit encryption.

Tunneling over SSH

svnserve's built-in authentication (and SASL support) can be very handy, because it avoids the need to create
real system accounts. On the other hand, some administrators already have well-established SSH authentication
frameworks in place. In these situations, all of the project's users already have system accounts and the ability
to “SSH into” the server machine.

208

Server Configuration

It's easy to use SSH in conjunction with svnserve. The client simply uses the svn+ssh:// URL scheme to
connect:

$ whoami

harry

$ svn list svn+ssh://host.example.com/repos/project

harryssh@host.example.com's password: *x*x*xx*

foo
bar

baz

In this example, the Subversion client is invoking a local ssh process, connecting to host .example.com, au-
thenticating as the user harryssh (according to SSH user configuration), then spawning a private svnserve
process on the remote machine running as the user harryssh. The svnserve command is being invoked in
tunnel mode (-t), and its network protocol is being “tunneled” over the encrypted connection by ssh, the tunnel
agent. If the client performs a commit, the authenticated username harryssh will be used as the author of the
new revision.

The important thing to understand here is that the Subversion client is not connecting to a running svnserve
daemon. This method of access doesn't require a daemon, nor does it notice one if present. It relies wholly on
the ability of ssh to spawn a temporary svnserve process, which then terminates when the network connection
is closed.

When using svn+ssh:// URLs to access a repository, remember that it's the ssh program prompting for au-
thentication, and not the svn client program. That means there's no automatic password-caching going on (see
the section called “Caching credentials”). The Subversion client often makes multiple connections to the repos-
itory, though users don't normally notice this due to the password caching feature. When using svn+ssh://
URLSs, however, users may be annoyed by ssh repeatedly asking for a password for every outbound connec-
tion. The solution is to use a separate SSH password-caching tool such as ssh-agent on a Unix-like system, or
pageant on Windows.

When running over a tunnel, authorization is primarily controlled by operating system permissions to the
repository's database files; it's very much the same as if Harry were accessing the repository directly via a
file:// URL. If multiple system users are going to be accessing the repository directly, you may want to place
them into a common group, and you'll need to be careful about umasks (be sure to read the section called “Sup-
porting Multiple Repository Access Methods” later in this chapter). But even in the case of tunneling, you can
still use the svnserve. conf file to block access, by simply setting auth-access = reador auth-access

2
= none.

You'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows you to create
custom tunnel behaviors in your runtime config file (see the section called “Runtime Configuration Area”).
For example, suppose you want to use RSH instead of SSH.2 In the [tunnels] section of your config file,
simply define it like this:

*Note that using any sort of svnserve-enforced access control at all is a bit pointless; the user already has direct access to the repository database.
3We don't actually recommend this, since RSH is notably less secure than SSH.

209

Server Configuration

[tunnels]

rsh = rsh

And now, you can use this new tunnel definition by using a URL scheme that matches the name of your new
variable: svn+rsh://host/path. When using the new URL scheme, the Subversion client will actually be
running the command rsh host svnserve -t behind the scenes. If you include a username in the URL (e.g.,
svn+rsh://username@host/path), the client will also include that in its command (rsh username@host
svnserve -t).Butyou can define new tunneling schemes to be much more clever than that:

[tunnels]
joessh = $JOESSH /opt/alternate/ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion client launch a very
specific tunneling binary (the one located at /opt /alternate/ssh) with specific options. In this case, access-
ing an svn+joessh:// URL would invoke the particular SSH binary with -p 29934 as arguments—useful if
you want the tunnel program to connect to a nonstandard port.

Second, it shows how to define a custom environment variable that can override the name of the tunneling
program. Setting the SVN SSH environment variable is a convenient way to override the default SSH tunnel
agent. But if you need to have several different overrides for different servers, each perhaps contacting a different
port or passing a different set of options to SSH, you can use the mechanism demonstrated in this example.
Now if we were to set the JOESSH environment variable, its value would override the entire value of the tunnel
variable—$JOESSH would be executed instead of /opt/alternate/ssh -p 29934.

SSH Configuration Tricks

It's possible to control not only the way in which the client invokes ssh, but also to control the behavior of sshd
on your server machine. In this section, we'll show how to control the exact svnserve command executed by
sshd, as well as how to have multiple users share a single system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make sure the account has
an SSH public/private keypair installed, and that the user can log in via public-key authentication. Password au-
thentication will not work, since all of the following SSH tricks revolve around using the SSH authorized keys
file.

If it doesn't already exist, create the authorized keys file (on Unix, typically ~/ . ssh/authorized keys).
Each line in this file describes a public key that is allowed to connect. The lines are typically of the form:

ssh-dsa AAAABtce9euch.. user@example.com

The first field describes the type of key, the second field is the base64-encoded key itself, and the third field is a
comment. However, it's a lesser known fact that the entire line can be preceded by a command field:

command="program" ssh-dsa AAAABtce9euch.. userf@example.com

When the command field is set, the SSH daemon will run the named program instead of the typical tunnel-mode
svnserve invocation that the Subversion client asks for. This opens the door to a number of server-side tricks.
In the following examples, we abbreviate the lines of the file as:

210

Server Configuration

command="program" TYPE KEY COMMENT

Controlling the invoked command

Because we can specify the executed server-side command, it's easy to name a specific svnserve binary to run
and to pass it extra arguments:

command="/path/to/svnserve -t -r /virtual/root" TYPE KEY COMMENT

In this example, /path/to/svnserve might be a custom wrapper script around svnserve which sets the
umask (see the section called “Supporting Multiple Repository Access Methods”). It also shows how to anchor
svnserve in a virtual root directory, just as one often does when running svnserve as a daemon process. This
might be done either to restrict access to parts of the system, or simply to relieve the user of having to type an
absolute path in the svn+ssh:// URL.

It's also possible to have multiple users share a single account. Instead of creating a separate system ac-
count for each user, generate a public/private key pair for each person. Then place each public key into the
authorized keys file, one per line, and use the --tunnel-user option:

command="svnserve -t —--tunnel-user=harry" TYPEl KEY1l harry@example.com

command="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sally@example.com

This example allows both Harry and Sally to connect to the same account via public key authentication. Each
of them has a custom command that will be executed; the --tunnel-user option tells svnserve to assume
that the named argument is the authenticated user. Without --tunnel-user, it would appear as though all
commits were coming from the one shared system account.

A final word of caution: giving a user access to the server via public-key in a shared account might still allow other
forms of SSH access, even if you've set the command value in authorized keys. For example, the user may
still get shell access through SSH or be able to perform X11 or general port forwarding through your server. To
give the user as little permission as possible, you may want to specify a number of restrictive options immediately
after the command:

command="svnserve -t --tunnel-user=harry",no-port-forwarding,no-agent-forw

arding,no-Xll-forwarding,no-pty TYPEl KEY1l harry@example.com

Note that this all must be on one line—truly on one line—since SSH authorized keys files do not even allow
the conventional backslash character (\) for line continuation. The only reason we've shown it with a line break
is to fit it on the physical page of a book.

httpd, the Apache HTTP Server

The Apache HTTP Server is a “heavy-duty” network server that Subversion can leverage. Via a custom module,
httpd makes Subversion repositories available to clients via the WebDAV/DeltaV* protocol, which is an exten-
sion to HTTP 1.1. This protocol takes the ubiquitous HTTP protocol that is the core of the World Wide Web,

4See http://www.webdav.org/.

211

http://www.webdav.org/

Server Configuration

and adds writing—specifically, versioned writing—capabilities. The result is a standardized, robust system that
is conveniently packaged as part of the Apache 2.0 software, supported by numerous operating systems and
third-party products, and doesn't require network administrators to open up yet another custom port.> While
an Apache-Subversion server has more features than svnserve, it's also a bit more difficult to set up. With flex-
ibility often comes more complexity.

Much of the following discussion includes references to Apache configuration directives. While some examples
are given of the use of these directives, describing them in full is outside the scope of this chapter. The Apache
team maintains excellent documentation, publicly available on their web site at http://httpd.apache.org. For
example, a general reference for the configuration directives is located at http://httpd.apache.org/docs-2.0/
mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake will be
made. If you are not already familiar with Apache's logging subsystem, you should become aware of it. In your
httpd.conf file are directives that specify the on-disk locations of the access and error logs generated by
Apache (the CustomLog and ErrorLog directives, respectively). Subversion's mod_dav_svn uses Apache's
error logging interface as well. You can always browse the contents of those files for information that might re-
veal the source of a problem that is not clearly noticeable otherwise.

Prerequisites

To network your repository over HTTP, you basically need four components, available in two packages.
You'll need Apache httpd 2.0 or newer, the mod_dav DAV module that comes with it, Subversion, and the
mod_dav_svn filesystem provider module distributed with Subversion. Once you have all of those compo-
nents, the process of networking your repository is as simple as:

+ Getting httpd up and running with the mod_ dav module

« Installing the mod_dav_svn backend to mod_ dav, which uses Subversion's libraries to access the repos-
itory

« Configuring your httpd. conf file to export (or expose) the repository

You can accomplish the first two items either by compiling httpd and Subversion from source code or by in-
stalling prebuilt binary packages of them on your system. For the most up-to-date information on how to com-
pile Subversion for use with the Apache HTTP Server, as well as how to compile and configure Apache itself for
this purpose, see the INSTALL file in the top level of the Subversion source code tree.

Basic Apache Configuration

Once you have all the necessary components installed on your system, all that remains is the configuration of
Apache via its httpd. conf file. Instruct Apache to load the mod_dav_svn module using the LoadModule
directive. This directive must precede any other Subversion-related configuration items. If your Apache was
installed using the default layout, your mod_dav_svn module should have been installed in the modules
subdirectory of the Apache install location (often /usr/local/apache2). The LoadModule directive has a
simple syntax, mapping a named module to the location of a shared library on disk:

LoadModule dav_svn module modules/mod dav_svn.so

5They really hate doing that.

212

http://httpd.apache.org
http://httpd.apache.org/docs-2.0/mod/directives.html
http://httpd.apache.org/docs-2.0/mod/directives.html

Server Configuration

Apache interprets the LoadModule configuration item's library path as relative to its own server root. If config-
ured as previously shown, Apache will look for the Subversion DAV module shared library in its own modules/
subdirectory. Depending on how Subversion was installed on your system, you might need to specify a different
path for this library altogether, perhaps even an absolute path such as in the following example:

LoadModule dav_svn _module C:/Subversion/lib/mod dav_svn.so

Note that if mod_ dav was compiled as a shared object (instead of statically linked directly to the httpd binary),
you'll need a similar LoadModule statement for it, too. Be sure that it comes before the mod_dav_svn line:

LoadModule dav_module modules/mod dav.so

LoadModule dav_svn module modules/mod dav svn.so

At alater location in your configuration file, you now need to tell Apache where you keep your Subversion repos-
itory (or repositories). The Locat i on directive has an XML-like notation, starting with an opening tag and end-
ing with a closing tag, with various other configuration directives in the middle. The purpose of the Location
directive is to instruct Apache to do something special when handling requests that are directed at a given URL
or one of its children. In the case of Subversion, you want Apache to simply hand off support for URLs that
point at versioned resources to the DAV layer. You can instruct Apache to delegate the handling of all URLs
whose path portions (the part of the URL that follows the server's name and the optional port number) begin
with /repos/ to a DAV provider whose repository is located at /var/svn/repository using the following
httpd.conf syntax:

<Location /repos>

DAV svn

SVNPath /var/svn/repository
</Location>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on your lo-
cal disk, you can use an alternative directive—SVNParentPath—to indicate that common parent directory. For
example, if you know you will be creating multiple Subversion repositories in a directory /var/svn that would
be accessed via URLs suchas http://my.server.com/svn/reposl, http://my.server.com/svn/re-
pos2, and so on, you could use the ht tpd. conf configuration syntax in the following example:

<Location /svn>
DAV svn

Automatically map any "/svn/foo" URL to repository /var/svn/foo
SVNParentPath /var/svn
</Location>

Using this syntax, Apache will delegate the handling of all URLs whose path portions begin with /svn/ to the
Subversion DAV provider, which will then assume that any items in the directory specified by the SVNParent-
Path directive are actually Subversion repositories. This is a particularly convenient syntax in that, unlike the
use of the SVNPath directive, you don't have to restart Apache to add or remove hosted repositories.

Be sure that when you define your new Location, it doesn't overlap with other exported locations. For example,
if your main DocumentRoot is exported to /www, do not export a Subversion repository in <Location /
www/repos>. If a request comes in for the URI /www/repos/foo.c, Apache won't know whether to look for

213

Server Configuration

a file repos/foo. c in the DocumentRoot, or whether to delegate mod_dav_svn to return foo. c from the
Subversion repository. The result is often an error from the server of the form 301 Moved Permanently.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files and directories. As
part of the sanity checking done by the Apache modules, the source of the copy is expected to be located
on the same machine as the destination of the copy. To satisfy this requirement, you might need to tell
mod_ dav the name you use as the hostname of your server. Generally, you can use the ServerName
directive in httpd. conf to accomplish this.

ServerName svn.example.com

If you are using Apache's virtual hosting support via the NameVirtualHost directive, you may need to
use the ServerAlias directive to specify additional names by which your server is known. Again, refer
to the Apache documentation for full details.

At this stage, you should strongly consider the question of permissions. If you've been running Apache for some
time now as your regular web server, you probably already have a collection of content—web pages, scripts, and
such. These items have already been configured with a set of permissions that allows them to work with Apache,
or more appropriately, that allows Apache to work with those files. Apache, when used as a Subversion server,
will also need the correct permissions to read and write to your Subversion repository.

You will need to determine a permission system setup that satisfies Subversion's requirements without messing
up any previously existing web page or script installations. This might mean changing the permissions on your
Subversion repository to match those in use by other things that Apache serves for you, or it could mean using the
User and Group directives in httpd. conf to specify that Apache should run as the user and group that owns
your Subversion repository. There is no single correct way to set up your permissions, and each administrator
will have different reasons for doing things a certain way. Just be aware that permission-related problems are
perhaps the most common oversight when configuring a Subversion repository for use with Apache.

Authentication Options

At this point, if you configured httpd. conf to contain something such as the following;:

<Location /svn>
DAV svn
SVNParentPath /var/svn

</Location>

your repository is “anonymously” accessible to the world. Until you configure some authentication and autho-
rization policies, the Subversion repositories that you make available via the Location directive will be gener-
ally accessible to everyone. In other words:

« Anyone can use a Subversion client to check out a working copy of a repository URL (or any of its subdirec-
tories).

« Anyone can interactively browse the repository's latest revision simply by pointing a web browser to the repos-
itory URL.

214

Server Configuration

« Anyone can commit to the repository.

Of course, you might have already set up a pre-commi t hook script to prevent commits (see the section called
“Implementing Repository Hooks”). But as you read on, you'll see that it's also possible to use Apache's built-

in methods to restrict access in specific ways.

does not guard the privacy of valid users' network activity. See the section called “Protecting
network traffic with SSL” for how to configure your server to support SSL encryption, which
can provide that extra layer of protection.

0 Requiring authentication defends against invalid users directly accessing the repository, but

Basic authentication

The easiest way to authenticate a client is via the HTTP Basic authentication mechanism, which simply uses a
username and password to verify a user's identity. Apache provides the htpasswd utility6 for managing files

containing usernames and passwords.

Basic authentication is extremely insecure, because it sends passwords over the network in
very nearly plain text. See the section called “Digest authentication” for details on using the

much safer Digest mechanism.

First, create a password file and grant access to users Harry and Sally:

$ ### First time: use -c to create the file

S ### Use -m to use MD5 encryption of the password, which is more secure
$ htpasswd -c -m /etc/svn-auth.htpasswd harry

New password: ***x*xx*

Re-type new password: ****x*

Adding password for user harry

$ htpasswd -m /etc/svn-auth.htpasswd sally

New password: **x*xx#kx*

Re-type new password: ****xxx

Adding password for user sally

$

Next, add some more directives inside the <L.ocation> block to tell Apache how to use the password file:

<Location /svn>
DAV svn
SVNParentPath /var/svn

Authentication: Basic

AuthName "Subversion repository"
AuthType Basic

AuthUserFile /etc/svn-auth.htpasswd

</Location>

These directives work as follows:

6See http://httpd.apache.org/docs/current/programs/htpasswd.html.

215

http://httpd.apache.org/docs/current/programs/htpasswd.html

Server Configuration

e AuthName is an arbitrary name that you choose for the authentication domain. Most browsers display this
name in the dialog box when prompting for username and password.

« AuthType specifies the type of authentication to use.
« AuthUserFile specifies the location of the password file to use.

However, this <Location> block doesn't yet do anything useful. It merely tells Apache that if authorization
were required, it should challenge the Subversion client for a username and password. (When authorization is
required, Apache requires authentication as well.) What's missing here, however, are directives that tell Apache
which sorts of client requests require authorization; currently, none do. The simplest thing is to specify that all

requests require authorization by adding Require valid-user to the block:

<Location /svn>
DAV svn
SVNParentPath /var/svn

Authentication: Basic

AuthName "Subversion repository"
AuthType Basic

AuthUserFile /etc/svn-auth.htpasswd

Authorization: Authenticated users only
Require valid-user

</Location>

Refer to the section called “Authorization Options” for more detail on the Require directive and other ways to

set authorization policies.

Digest authentication

Digest authentication is an improvement on Basic authentication which allows the server to verify a client's iden-
tity without sending the password over the network unprotected. Both client and server create a non-reversible
MDs5 hash of the username, password, requested URI, and a nonce (number used once) provided by the server
and changed each time authentication is required. The client sends its hash to the server, and the server then
verifies that the hashes match.

Configuring Apache to use Digest authentication is straightforward, with only small variations on our prior ex-

ample:

<Location /svn>
DAV svn
SVNParentPath /var/svn

Authentication: Digest

AuthName "Subversion repository"
AuthType Digest

AuthUserFile /etc/svn-auth.htdigest

Authorization: Authenticated users only
Require valid-user

</Location>

216

Server Configuration

Notice that AuthType is now set to Digest, and we specify a different path for AuthUserFile. Digest au-
thentication uses a different file format than Basic authentication; it is created using Apache's htdigest utility”
rather than htpasswd. Digest authentication also has the additional concept of a “realm”, which must match
the value of the AuthName directive. The password file can be created as follows:

$ ### First time: use -c to create the file

$ htdigest -c /etc/svn-auth.htdigest "Subversion repository" harry
Adding password for harry in realm Subversion repository.

New password: ***x*x*

Re-type new password: ***xxx*

$ htdigest /etc/svn-auth.htdigest "Subversion repository" sally
Adding user sally in realm Subversion repository

New password: **xxx#xk

Re-type new password: ****xxxx

$

Authorization Options

At this point, you've configured authentication, but not authorization. Apache is able to challenge clients and
confirm identities, but it has not been told how to allow or restrict access to the clients bearing those identities.
This section describes two strategies for controlling access to your repositories.

Blanket access control

The simplest form of access control is to authorize certain users for either read-only access to a repository or
read/write access to a repository.

You can restrict access on all repository operations by adding Require valid-user directly inside the <Lo-
cation>block. The example from the section called “Digest authentication” allows only clients that successfully
authenticate to do anything with the Subversion repository:

<Location /svn>
DAV svn
SVNParentPath /var/svn

Authentication: Digest

AuthName "Subversion repository"
AuthType Digest

AuthUserFile /etc/svn-auth.htdigest

Authorization: Authenticated users only
Require valid-user

</Location>

Sometimes you don't need to run such a tight ship. For example, Subversion's own source code repository
at http://svn.collab.net/repos/svn allows anyone in the world to perform read-only repository tasks (such as
checking out working copies and browsing the repository), but restricts write operations to authenticated users.
The Limit and LimitExcept directives allow for this type of selective restriction. Like the Location directive,
these blocks have starting and ending tags, and you would nest them inside your <Location> block.

’See http://httpd.apache.org/docs/current/programs/htdigest.html.

217

http://svn.collab.net/repos/svn
http://httpd.apache.org/docs/current/programs/htdigest.html

Server Configuration

The parameters present on the Limit and LimitExcept directives are HTTP request types that are affected
by that block. For example, to allow anonymous read-only operations, you would use the LimitExcept direc-
tive (passing the GET, PROPFIND, OPTIONS, and REPORT request type parameters) and place the previously
mentioned Require valid-user directive inside the <LimitExcept> block instead of just inside the <Lo-
cation> block.

<Location /svn>
DAV svn
SVNParentPath /var/svn

Authentication: Digest

AuthName "Subversion repository"
AuthType Digest

AuthUserFile /etc/svn-auth.htdigest

Authorization: Authenticated users only for non-read-only
(write) operations; allow anonymous reads
<LimitExcept GET PROPFIND OPTIONS REPORT>
Require valid-user
</LimitExcept>
</Location>

These are only a few simple examples. For more in-depth information about Apache access control and the
Require directive, take a look at the Security section of the Apache documentation's tutorials collection at
http://httpd.apache.org/docs-2.0/misc/tutorials.html.

Per-directory access control

It's possible to set up finer-grained permissions using mod_ authz_ svn. This Apache module grabs the various
opaque URLs passing from client to server, asks mod_dav_svn to decode them, and then possibly vetoes
requests based on access policies defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and installed alongside
mod_dav_svn. Many binary distributions install it automatically as well. To verify that it's installed correctly,
make sure it comes right after mod_dav_svn's LoadModule directive in httpd. conf:

LoadModule dav_module modules/mod dav.so
LoadModule dav_svn module modules/mod dav_svn.so

LoadModule authz svn module modules/mod authz svn.so

To activate this module, you need to configure your <Location> block to use the AuthzSVNAccessFile di-
rective, which specifies a file containing the permissions policy for paths within your repositories. (In a moment,
we'll discuss the format of that file.)

Apache is flexible, so you have the option to configure your block in one of three general patterns. To begin,
choose one of these basic configuration patterns. (The following examples are very simple; look at Apache's own
documentation for much more detail on Apache authentication and authorization options.)

The most open approach is to allow access to everyone. This means Apache never sends authentication chal-
lenges, and all users are treated as “anonymous”. (See Example 6.2, “A sample configuration for anonymous

access”.

218

http://httpd.apache.org/docs-2.0/misc/tutorials.html

Server Configuration

Example 6.2. A sample configuration for anonymous access

<Location /repos>
DAV svn
SVNParentPath /var/svn

Authentication: None

Authorization: Path-based access control
AuthzSVNAccessFile /path/to/access/file

</Location>

On the opposite end of the paranoia scale, you can configure Apache to authenticate all clients. This block un-
conditionally requires authentication via the Require valid-user directive, and defines a means to authen-
ticate valid users. (See Example 6.3, “A sample configuration for authenticated access”.)

Example 6.3. A sample configuration for authenticated access

<Location /repos>
DAV svn
SVNParentPath /var/svn

Authentication: Digest

AuthName "Subversion repository"
AuthType Digest

AuthUserFile /etc/svn-auth.htdigest

Authorization: Path-based access control; authenticated users only
AuthzSVNAccessFile /path/to/access/file
Require valid-user

</Location>

A third very popular pattern is to allow a combination of authenticated and anonymous access. For example,
many administrators want to allow anonymous users to read certain repository directories, but restrict access
to more sensitive areas to authenticated users. In this setup, all users start out accessing the repository anony-
mously. If your access control policy demands a real username at any point, Apache will demand authentication
from the client. To do this, use both the Satisfy Anyand Require valid-user directives. (See Example 6.4,
“A sample configuration for mixed authenticated/anonymous access”.)

Example 6.4. A sample configuration for mixed authenticated/anonymous
access

<Location /repos>
DAV svn
SVNParentPath /var/svn

Authentication: Digest

AuthName "Subversion repository"
AuthType Digest

AuthUserFile /etc/svn-auth.htdigest

219

Server Configuration

Authorization: Path-based access control; try anonymous access
first, but authenticate if necessary
AuthzSVNAccessFile /path/to/access/file

Satisfy Any

Require valid-user

</Location>

The next step is to create the authorization file containing access rules for particular paths within the repository.
We describe how later in this chapter, in the section called “Path-Based Authorization”.

Disabling path-based checks

The mod_dav_svn module goes through a lot of work to make sure that data you've marked “unreadable”
doesn't get accidentally leaked. This means it needs to closely monitor all of the paths and file-contents returned
by commands such as svn checkout and svn update. If these commands encounter a path that isn't readable
according to some authorization policy, the path is typically omitted altogether. In the case of history or rename
tracing—for example, running a command such as svn cat -r OLD foo.c on a file that was renamed long
ago—the rename tracking will simply halt if one of the object's former names is determined to be read-restricted.

All of this path checking can sometimes be quite expensive, especially in the case of svn log. When retrieving
a list of revisions, the server looks at every changed path in each revision and checks it for readability. If an
unreadable path is discovered, it's omitted from the list of the revision's changed paths (normally seen with the
--verbose (-v) option), and the whole log message is suppressed. Needless to say, this can be time-consuming
on revisions that affect a large number of files. This is the cost of security: even if you haven't configured a module
such as mod_authz_svn at all, the mod_dav_svn module is still asking Apache httpd to run authorization
checks on every path. The mod__dav_svn module has no idea what authorization modules have been installed,
so all it can do is ask Apache to invoke whatever might be present.

On the other hand, there's also an escape hatch of sorts, which allows you to trade security features for speed. If
you're not enforcing any sort of per-directory authorization (i.e., not using mod_ authz_svn or similar mod-
ule), you can disable all of this path checking. In your httpd.conf file, use the SVNPathAuthz directive as
shown in Example 6.5, “Disabling path checks altogether”.

Example 6.5. Disabling path checks altogether

<Location /repos>
DAV svn
SVNParentPath /var/svn

SVNPathAuthz off

</Location>

The svNPathAuthz directive is “on” by default. When set to “off,” all path-based authorization checking is
disabled; mod_dav_svn stops invoking authorization checks on every path it discovers.

Protecting network traffic with SSL

Connecting to a repository via http:// means that all Subversion activity is sent across the network in the
clear. This means that actions such as checkouts, commits, and updates could potentially be intercepted by an

220

Server Configuration

unauthorized party “sniffing” network traffic. Encrypting traffic using SSL is a good way to protect potentially
sensitive information over the network.

If a Subversion client is compiled to use OpenSSL, it gains the ability to speak to an Apache server viahttps://
URLs, so all traffic is encrypted with a per-connection session key. The WebDAYV library used by the Subversion
client is not only able to verify server certificates, but can also supply client certificates when challenged by the
server.

Subversion server SSL certificate configuration

It's beyond the scope of this book to describe how to generate client and server SSL certificates and how to
configure Apache to use them. Many other references, including Apache's own documentation, describe the
process.

SSL certificates from well-known entities generally cost money, but at a bare minimum, you
o/) can configure Apache to use a self-signed certificate generated with a tool such as OpenSSL

(http:// openssl.org).8

Subversion client SSL certificate management

When connecting to Apache via https://, a Subversion client can receive two different types of responses:
« A server certificate

« A challenge for a client certificate
Server certificate

When the client receives a server certificate, it needs to verify that the server is who it claims to be. OpenSSL does
this by examining the signer of the server certificate, or certificate authority (CA). If OpenSSL is unable to au-
tomatically trust the CA, or if some other problem occurs (such as an expired certificate or hostname mismatch),
the Subversion command-line client will ask you whether you want to trust the server certificate anyway:

S svn list https://host.example.com/repos/project

Error validating server certificate for 'https://host.example.com:443"':
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!
Certificate information:
- Hostname: host.example.com
- Valid: from Jan 30 19:23:56 2004 GMT until Jan 30 19:23:56 2006 GMT
- Issuer: CA, example.com, Sometown, California, US
- Fingerprint: 7d:el:a9:34:33:39:ba:6a:€9:a5:c4:22:98:7b:76:5c:92:a0:9c:7b

(R)eject, accept (t)emporarily or accept (p)ermanently?

This dialogue is essentially the same question you may have seen coming from your web browser (which is just
another HTTP client like Subversion). If you choose the (p)ermanent option, Subversion will cache the server

8While self-signed certificates are still vulnerable to a “man-in-the-middle” attack, such an attack is much more difficult for a casual observer to
pull off, compared to sniffing unprotected passwords.

221

http://openssl.org

Server Configuration

certificate in your private runtime auth/ area, just as your username and password are cached (see the section
called “Caching credentials”), and will automatically trust the certificate in the future.

Your runtime servers file also gives you the ability to make your Subversion client automatically trust specific
CAs, either globally or on a per-host basis. Simply set the ss1-authority-files variable to a semicolon-sep-
arated list of PEM-encoded CA certificates:

[global]
ssl-authority-files = /path/to/CAcertl.pem; /path/to/CAcert2.pem

Many OpenSSL installations also have a predefined set of “default” CAs that are nearly universally trusted. To
make the Subversion client automatically trust these standard authorities, set the ss1-trust-default-ca
variable to true.

Client certificate challenge

If the client receives a challenge for a certificate, the server is asking the client to prove its identity. The client
must send back a certificate signed by a CA that the server trusts, along with a challenge response which proves
that the client owns the private key associated with the certificate. The private key and certificate are usually
stored in an encrypted format on disk, protected by a passphrase. When Subversion receives this challenge, it
will ask you for the path to the encrypted file and the passphrase that protects it:

$ svn list https://host.example.com/repos/project

Authentication realm: https://host.example.com:443
Client certificate filename: /path/to/my/cert.pl2
Passphrase for '/path/to/my/cert.pl2': rrxkxxksx

Notice that the client credentials are stored in a . p12 file. To use a client certificate with Subversion, it must be
in PKCS#12 format, which is a portable standard. Most web browsers are able to import and export certificates
in that format. Another option is to use the OpenSSL command-line tools to convert existing certificates into
PKCS#12.

The runtime servers file also allows you to automate this challenge on a per-host basis. If you set the ss1-
client-cert-fileand ssl-client-cert-password variables, Subversion can automatically respond to

a client certificate challenge without prompting you:

[groups]
examplehost = host.example.com

[examplehost]
ssl-client-cert-file = /path/to/my/cert.pl2

ssl-client-cert-password = somepassword

More security-conscious folk might want to exclude ssl-client-cert-password to avoid storing the
passphrase in the clear on disk.

Extra Goodies

We've covered most of the authentication and authorization options for Apache and mod_ dav_svn. But there
are a few other nice features that Apache provides.

222

Server Configuration

Repository browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion repository is that your
versioned files and directories are immediately available for viewing via a regular web browser. Since Subversion
uses URLs to identify versioned resources, those URLs used for HTTP-based repository access can be typed
directly into a web browser. Your browser will issue an HTTP GET request for that URL; based on whether that
URL represents a versioned directory or file, mod_dav_svn will respond with a directory listing or with file
contents.

URL syntax

If the URLs do not contain any information about which version of the resource you wish to see, mod_ dav_svn
will answer with the youngest version. This functionality has the wonderful side effect that you can pass around
Subversion URLS to your peers as references to documents, and those URLSs will always point at the latest man-
ifestation of that document. Of course, you can even use the URLSs as hyperlinks from other web sites, too.

As of Subversion 1.6, mod_ dav_svn supports a public URI syntax for examining older revisions of both files
and directories. The syntax uses the query string portion of the URL to specify either or both of a peg revision and
operative revision, which Subversion will then use to determine which version of the file or directory to display
to your web browser. Add the query string name/value pair p=PEGREV, where PEGREV is a revision number, to
specify the peg revision you wish to apply to the request. Use r=REV, where REV is a revision number, to specify
an operative revision.

For example, if you wish to see the latest version of a README . txt file located in your project's /t runk, point
your web browser to that file's repository URL, which might look something like the following:

http://host.example.com/repos/project/trunk/README. txt

If you now wish to see some older version of that file, add an operative revision to the URL's query string:

http://host.example.com/repos/project/trunk/README. txt?r=1234

What if the thing you're trying to view no longer exists in the youngest revision of the repository? That's where
a peg revision is handy:

http://host.example.com/repos/project/trunk/deleted-thing.txt?p=321

And of course, you can combine peg revision and operative revision specifiers to fine-tune the exact item you
wish to view:

http://host.example.com/repos/project/trunk/renamed-thing.txt?p=123&r=21

The previous URL would display revision 21 of the object which, in revision 123, was located at /trunk/re-
named-thing. txt in the repository. See the section called “Peg and Operative Revisions” for a detailed ex-
planation of these “peg revision” and “operative revision” concepts. They can be a bit tricky to wrap your head
around.

223

Server Configuration

As a reminder, this feature of mod_dav_svn offers only a limited repository browsing experience. You
can see directory listings and file contents, but no revision properties (such as commit log messages) or
file/directory properties. For folks who require more extensive browsing of repositories and their history,
there are several third-party software packages which offer this. Some examples include ViewVC (http://
viewvec.tigris.org), Trac (http://trac.edgewall.org) and WebSVN (http://websvn.info). These third-party tools
don't affect mod_dav_svn's built-in “browseability”, and generally offer a much wider set of features, including
the display of the aforementioned property sets, display of content differences between file revisions, and so on.

Proper MIME type

When browsing a Subversion repository, the web browser gets a clue about how to render a file's contents by
looking at the Content-Type: header returned in Apache's response to the HTTP GET request. The value of
this header is some sort of MIME type. By default, Apache will tell the web browsers that all repository files are
of the “default” MIME type, typically text/plain. This can be frustrating, however, if a user wishes repository
files to render as something more meaningful—for example, it might be nice to have a foo.html file in the
repository actually render as HTML when browsing.

To make this happen, you need only to make sure that your files have the proper svn:mime-type set. We
discuss this in more detail in the section called “File Content Type”, and you can even configure your client to
automatically attach proper svn:mime-type properties to files entering the repository for the first time; see
the section called “Automatic Property Setting”.

Continuing our example, if one were to set the svn:mime-type property to text/html on file foo.html,
Apache would properly tell your web browser to render the file as HTML. One could also attach proper image/ *
MIME-type properties to image files and ultimately get an entire web site to be viewable directly from a reposi-
tory! There's generally no problem with this, as long as the web site doesn't contain any dynamically generated
content.

Customizing the look

You generally will get more use out of URLSs to versioned files—after all, that's where the interesting content
tends to lie. But you might have occasion to browse a Subversion directory listing, where you'll quickly note
that the generated HTML used to display that listing is very basic, and certainly not intended to be aesthetically
pleasing (or even interesting). To enable customization of these directory displays, Subversion provides an XML
index feature. A single SVNIndexXSLT directive in your repository's Location block of httpd.conf will in-
struct mod__dav_svn to generate XML output when displaying a directory listing, and to reference the XSLT
stylesheet of your choice:

<Location /svn>
DAV svn
SVNParentPath /var/svn
SVNIndexXSLT "/svnindex.xsl"

</Location>

Using the SVNIndexXSLT directive and a creative XSLT stylesheet, you can make your directory listings match
the color schemes and imagery used in other parts of your web site. Or, if you'd prefer, you can use the sample
stylesheets provided in the Subversion source distribution's tools/xs1t/ directory. Keep in mind that the
path provided to the SVNIndexXSLT directory is actually a URL path—browsers need to be able to read your
stylesheets to make use of them!

224

http://viewvc.tigris.org
http://viewvc.tigris.org
http://trac.edgewall.org
http://websvn.info

Server Configuration

Listing repositories

If you're serving a collection of repositories from a single URL via the SVNParentPath directive, then it's also
possible to have Apache display all available repositories to a web browser. Just activate the SVNListParent-
Path directive:

<Location /svn>
DAV svn
SVNParentPath /var/svn
SVNListParentPath on

</Location>

If a user now points her web browser to the URL http://host.example.com/svn/, she'll see a list of all
Subversion repositories sitting in /var/svn. Obviously, this can be a security problem, so this feature is turned
off by default.

Apache logging

Because Apache is an HTTP server at heart, it contains fantastically flexible logging features. It's beyond the
scope of this book to discuss all of the ways logging can be configured, but we should point out that even the most
generic httpd. conf file will cause Apache to produce two logs: error logand access log.These logs may
appear in different places, but are typically created in the logging area of your Apache installation. (On Unix,
they often live in /usr/local/apache2/logs/.)

The error log describes any internal errors that Apache runs into as it works. The access 1log file records
every incoming HTTP request received by Apache. This makes it easy to see, for example, which IP addresses
Subversion clients are coming from, how often particular clients use the server, which users are authenticating
properly, and which requests succeed or fail.

Unfortunately, because HTTP is a stateless protocol, even the simplest Subversion client operation generates
multiple network requests. It's very difficult to look at the access 1log and deduce what the client was doing—
most operations look like a series of cryptic PROPPATCH, GET, PUT, and REPORT requests. To make things worse,
many client operations send nearly identical series of requests, so it's even harder to tell them apart.

mod_dav_svn, however, can come to your aid. By activating an “operational logging” feature, you can ask
mod_dav_svn to create a separate log file describing what sort of high-level operations your clients are per-
forming.

To do this, you need to make use of Apache's CustomlLog directive (which is explained in more detail in Apache's
own documentation). Be sure to invoke this directive outside your Subversion Location block:

<Location /svn>
DAV svn

</Location>

CustomLog logs/svn_logfile "%t %u ${SVN-ACTION}e" env=SVN-ACTION

In this example, we're asking Apache to create a special logfile, svn logfile, in the standard Apache logs
directory. The %t and %u variables are replaced by the time and username of the request, respectively. The really

225

Server Configuration

important parts are the two instances of SVN-ACTION. When Apache sees that variable, it substitutes the value
of the SVN-ACTION environment variable, which is automatically set by mod_dav_svn whenever it detects
a high-level client action.

So, instead of having to interpret a traditional access 1log like this:

[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/vcc/default HTTP/1.1" 207 398
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/bln/59 HTTP/1.1" 207 449
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc HTTP/1.1"™ 207 647
[26/Jan/2007:22:25:29 -0600] "REPORT /svn/calc/!svn/vcc/default HTTP/1.1" 200 607
[26/Jan/2007:22:25:31 -0600] "OPTIONS /svn/calc HTTP/1.1" 200 188
[26/Jan/2007:22:25:31 -0600] "MKACTIVITY /svn/calc/'svn/act/e6035ef7-5df0-4ac0-
b811-4be7c823£998 HTTP/1.1" 201 227

you can peruse a much more intelligible svn logfile like this:

[26/Jan/2007:22:24:20 -0600] - get-dir /tags rl729 props
[26/Jan/2007:22:24:27 -0600] - update /trunk rl729 depth=infinity
[26/Jan/2007:22:25:29 -0600] - status /trunk/foo rl1l729 depth=infinity
[26/Jan/2007:22:25:31 -0600] sally commit r1730

In addition to the SVN-ACTION environment variable, mod_dav_svn also populates the SVN-REPOS and
SVN-REPOS-NAME variables, which carry the filesystem path to the repository and the basename thereof, re-
spectively. You might wish to include references to one or both of these variables in your CustomLog format
string, too, especially if you are combining usage information from multiple repositories into a single log file.

For an exhaustive list of all actions logged, see the section called “High-level Logging”.
Write-through proxying

One of the nice advantages of using Apache as a Subversion server is that it can be set up for simple replica-
tion. For example, suppose that your team is distributed across four offices around the globe. The Subversion
repository can exist only in one of those offices, which means the other three offices will not enjoy accessing
it—they're likely to experience significantly slower traffic and response times when updating and committing
code. A powerful solution is to set up a system consisting of one master Apache server and several slave Apache
servers. If you place a slave server in each office, users can check out a working copy from whichever slave is
closest to them. All read requests go to their local slave. Write requests get automatically routed to the single
master server. When the commit completes, the master then automatically “pushes” the new revision to each
slave server using the svnsync replication tool.

This configuration creates a huge perceptual speed increase for your users, because Subversion client traffic is
typically 80—90% read requests. And if those requests are coming from a local server, it's a huge win.

In this section, we'll walk you through a standard setup of this single-master/multiple-slave system. However,
keep in mind that your servers must be running at least Apache 2.2.0 (with mod_ proxy loaded) and Subversion
1.5 (mod_dav_svn).

Ours is just one example of how you might setup a Subversion write-through proxy configu-
O/ ration. There are other approaches. For example, rather than having the master server push

226

Server Configuration

changes out to every slave server, the slaves could periodically pull those changes from the
master. Or perhaps the master could push changes to a single slave, which then pushes the
same change to the next slave, and so on down the line. Administrators are encouraged to use
this section for basic understanding of what happens in a Subversion WebDAV proxy deploy-
ment scenario, and then implement the specific approach that works best for their organiza-
tion.

Configure the servers

First, configure your master server's ht tpd. conf file in the usual way. Make the repository available at a certain
URI location, and configure authentication and authorization however you'd like. After that's done, configure
each of your “slave” servers in the exact same way, but add the special SVNMasterURT directive to the block:

<Location /svn>
DAV svn
SVNPath /var/svn/repos
SVNMasterURI http://master.example.com/svn

</Location>

This new directive tells a slave server to redirect all write requests to the master. (This is done automatically via
Apache's mod_ proxy module.) Ordinary read requests, however, are still serviced by the slaves. Be sure that
your master and slave servers all have matching authentication and authorization configurations; if they fall out
of sync, it can lead to big headaches.

Next, we need to deal with the problem of infinite recursion. With the current configuration, imagine what will
happen when a Subversion client performs a commit to the master server. After the commit completes, the
server uses svnsync to replicate the new revision to each slave. But because svnsyne appears to be just another
Subversion client performing a commit, the slave will immediately attempt to proxy the incoming write request
back to the master! Hilarity ensues.

The solution to this problem is to have the master push revisions to a different <Location> on the slaves. This
location is configured to not proxy write requests at all, but to accept normal commits from (and only from) the
master's IP address:

<Location /svn-proxy-sync>
DAV svn
SVNPath /var/svn/repos
Order deny,allow
Deny from all
Only let the server's IP address access this Location:
Allow from 10.20.30.40

</Location>
Set up replication

Now that you've configured your Location blocks on master and slaves, you need to configure the master to
replicate to the slaves. Our walkthough uses svnsyne, which is covered in more detail in the section called
“Replication with svnsync”.

227

Server Configuration

First, make sure that each slave repository has a pre-revprop-change hook script which allows remote revi-
sion property changes. (This is standard procedure for being on the receiving end of svnsyne.) Then log into
the master server and configure each of the slave repository URIs to receive data from the master repository
on the local disk:

$ svnsync init http://slavel.example.com/svn-proxy-sync \
file:///var/svn/repos

Copied properties for revision O.

$ svnsync init http://slave2.example.com/svn-proxy-sync \
file:///var/svn/repos

Copied properties for revision 0.

$ svnsync init http://slave3.example.com/svn-proxy—-sync \
file:///var/svn/repos

Copied properties for revision O.
Perform the initial replication

$ svnsync sync http://slavel.example.com/svn-proxy-sync \
file:///var/svn/repos

Transmitting file data

Committed revision 1.

Copied properties for revision 1.

Transmitting file data

Committed revision 2.

Copied properties for revision 2.

$ svnsync sync http://slave2.example.com/svn-proxy—-sync \
file:///var/svn/repos

Transmitting file data

Committed revision 1.

Copied properties for revision 1.

Transmitting file data

Committed revision 2.

Copied properties for revision 2.

$ svnsync sync http://slave3.example.com/svn-proxy-sync \
file:///var/svn/repos

Transmitting file data

Committed revision 1.

Copied properties for revision 1.

Transmitting file data

Committed revision 2.

Copied properties for revision 2.

After this is done, we configure the master server's post-commi t hook script to invoke svnsyne on each slave
server:

#!/bin/sh

Post-commit script to replicate newly committed revision to slaves

228

Server Configuration

svnsync sync http://slavel.example.com/svn-proxy-sync \
file:///var/svn/repos > /dev/null 2>&l1 &

svnsync sync http://slave2.example.com/svn-proxy-sync \
file:///var/svn/repos > /dev/null 2>&l &

svnsync sync http://slave3.example.com/svn-proxy-sync \
file:///var/svn/repos > /dev/null 2>&l1 &

The extra bits on the end of each line aren't necessary, but they're a sneaky way to allow the sync commands to run
in the background so that the Subversion client isn't left waiting forever for the commit to finish. In addition to
this post-commit hook, you'll need a post-revprop-change hook as well so that when a user, say, modifies
a log message, the slave servers get that change also:

#!/bin/sh

Post-revprop-change script to replicate revprop-changes to slaves

REV=${2}

svnsync copy-revprops http://slavel.example.com/svn-proxy-sync \
file:///var/svn/repos \
-r $S{REV} > /dev/null 2>&1 &

svnsync copy-revprops http://slave2.example.com/svn-proxy-sync \
file:///var/svn/repos \
-r ${REV} > /dev/null 2>&1 &

svnsync copy-revprops http://slave3.example.com/svn-proxy-sync \
file:///var/svn/repos \
-r ${REV} > /dev/null 2>&l1 &

The only thing we've left out here is what to do about user-level locks (of the svn lock variety). Locks are enforced
by the master server during commit operations; but all the information about locks is distributed during read
operations such as svn update and svn status by the slave server. As such, a fully functioning proxy setup
needs to perfectly replicate lock information from the master server to the slave servers. Unfortunately, most of
the mechanisms that one might employ to accomplish this replication fall short in one way or another®. Many
teams don't use Subversion's locking features at all, so this may be a nonissue for you. Sadly, for those teams
which do use locks, we have no recommendations on how to gracefully work around this shortcoming.

Caveats

Your master/slave replication system should now be ready to use. A couple of words of warning are in order,
however. Remember that this replication isn't entirely robust in the face of computer or network crashes. For
example, if one of the automated svnsync commands fails to complete for some reason, the slaves will begin
to fall behind. For example, your remote users will see that they've committed revision 100, but then when they
run svn update, their local server will tell them that revision 100 doesn't yet exist! Of course, the problem will
be automatically fixed the next time another commit happens and the subsequent svnsynec is successful—the
sync will replicate all waiting revisions. But still, you may want to set up some sort of out-of-band monitoring to
notice synchronization failures and force svnsyne to run when things go wrong.

Another limitation of the write-through proxy deployment model involves version mismatches—of the version of
Subversion which is installed, that is—between the master and slave servers. Each new release of Subversion may
(and often does) add new features to the network protocol used between the clients and servers. Since feature

%http://subversion.tigris.org/issues/show_bug.cgi?id=3457 tracks these problems.

229

http://subversion.tigris.org/issues/show_bug.cgi?id=3457

Server Configuration

negotiation happens against the slave, it is the slave's protocol version and feature set which is used. But write
operations are passed through to the master server quite literally. Therefore, there is always a risk that the slave
server will answer a feature negotiation request from the client in way that is true for the slave, but untrue for
the master if the master is running an older version of Subversion. This could result in the client trying to use a
new feature that the master doesn't understand, and failing. There are a couple of known problems of this sort
in Subversion 1.7, which introduced a major revision of its HTTP protocol. If you are deploying a Subversion 1.7
slave server in front of a pre-1.7 master, you'll want to configure your slave server's Subversion <Location>
block with the SVNAdvertiseV2Protocol Off directive.

For the best results possible, try to run the same version of Subversion on your master and
Q/J slave servers.

Can We Set Up Replication with svnserve?

If you're using svnserve instead of Apache as your server, you can certainly configure your repository's
hook scripts to invoke svnsyne as we've shown here, thereby causing automatic replication from master
to slaves. Unfortunately, at the time of this writing there is no way to make slave svnserve servers au-
tomatically proxy write requests back to the master server. This means your users would only be able to
check out read-only working copies from the slave servers. You'd have to configure your slave servers to
disallow write access completely. This might be useful for creating read-only “mirrors” of popular open
source projects, but it's not a transparent proxying system.

Other Apache features

Several of the features already provided by Apache in its role as a robust web server can be leveraged for increased
functionality or security in Subversion as well. The Subversion client is able to use SSL (the Secure Sockets
Layer, discussed earlier). If your Subversion client is built to support SSL, it can access your Apache server using
https:// and enjoy a high-quality encrypted network session.

Equally useful are other features of the Apache and Subversion relationship, such as the ability to specify a
custom port (instead of the default HTTP port 80) or a virtual domain name by which the Subversion repository
should be accessed, or the ability to access the repository through an HTTP proxy.

Finally, because mod_dav_svn is speaking a subset of the WebDAV/DeltaV protocol, it's possible to access
the repository via third-party DAV clients. Most modern operating systems (Win32, OS X, and Linux) have the
built-in ability to mount a DAV server as a standard network “shared folder.” This is a complicated topic, but
also wondrous when implemented. For details, read Appendix C, WebDAV and Autoversioning.

Note that there are a number of other small tweaks one can make to mod_dav_svn that are too obscure to
mention in this chapter. For a complete list of all ht tpd . conf directives that mod_dav_svn responds to, see
the section called “Directives” in Chapter 9, Subversion Complete Reference.

Path-Based Authorization

Both Apache and svnserve are capable of granting (or denying) permissions to users. Typically this is done over
the entire repository: a user can read the repository (or not), and she can write to the repository (or not). It's
also possible, however, to define finer-grained access rules. One set of users may have permission to write to a

230

Server Configuration

certain directory in the repository, but not others; another directory might not even be readable by all but a few
special people. As files are paths, too, it's even possible to restrict access on a per file basis.

Both servers use a common file format to describe these path-based access rules. In the case of Apache,
one needs to load the mod__authz_svn module and then add the AuthzSVNAccessFile directive (with-
in the httpd. conf file) pointing to your own access rules file. (For a full explanation, see the section called
“Per-directory access control”.) If you're using svnserve, you need to make the authz-db variable (within
svnserve.conf) point to your access rules file.

Do You Really Need Path-Based Access Control?

Alot of administrators setting up Subversion for the first time tend to jump into path-based access control
without giving it a lot of thought. The administrator usually knows which teams of people are working on
which projects, so it's easy to jump in and grant certain teams access to certain directories and not others.
It seems like a natural thing, and it appeases the administrator's desire to maintain tight control of the
repository.

Note, though, that there are often invisible (and visible!) costs associated with this feature. In the visible
category, the server needs to do a lot more work to ensure that the user has the right to read or write
each specific path; in certain situations, there's very noticeable performance loss. In the invisible category,
consider the culture you're creating. Most of the time, while certain users shouldn't be committing changes
to certain parts of the repository, that social contract doesn't need to be technologically enforced. Teams
can sometimes spontaneously collaborate with each other; someone may want to help someone else out
by committing to an area she doesn't normally work on. By preventing this sort of thing at the server level,
you're setting up barriers to unexpected collaboration. You're also creating a bunch of rules that need to
be maintained as projects develop, new users are added, and so on. It's a bunch of extra work to maintain.

Remember that this is a version control system! Even if somebody accidentally commits a change to some-
thing she shouldn't, it's easy to undo the change. And if a user commits to the wrong place with deliberate
malice, it's a social problem anyway, and that the problem needs to be dealt with outside Subversion.

So, before you begin restricting users' access rights, ask yourself whether there's a real, honest need for this,
or whether it's just something that “sounds good” to an administrator. Decide whether it's worth sacrificing
some server speed, and remember that there's very little risk involved; it's bad to become dependent on
technology as a crutch for social problems.'®

As an example to ponder, consider that the Subversion project itself has always had a notion of who is
allowed to commit where, but it's always been enforced socially. This is a good model of community trust,
especially for open source projects. Of course, sometimes there are truly legitimate needs for path-based
access control; within corporations, for example, certain types of data really can be sensitive, and access
needs to be genuinely restricted to small groups of people.

Once your server knows where to find your access file, it's time to define the rules.

The syntax of the file is the same familiar one used by svnserve.conf and the runtime configuration files.
Lines that start with a hash (#) are ignored. In its simplest form, each section names a repository and path within
it, as well as the authenticated usernames are the option names within each section. The value of each option
describes the user's level of access to the repository path: either r (read-only) or rw (read/write). If the user is
not mentioned at all, no access is allowed.

19A common theme in this book!

231

Server Configuration

To be more specific: the value of the section names is either of the form [repos-name:path] or of the form

[path].

ion for the purposes of access control, converting them to lower case internally before com-
paring them against the contents of your access file. It now does these comparisons case-sen-
sitively. If you upgraded to Subversion 1.7 from an older version, you should review your ac-

Q Prior to version 1.7, Subversion treated repository names and paths in a case-insensitive fash-

cess files for case correctness.

If you're using the SVNParentPath directive, it's important to specify the repository names in your sections. If
you omit them, a section such as [/some/dir] will match the path /some/dir in every repository. If you're
using the SVNPath directive, however, it's fine to only define paths in your sections—after all, there's only one

repository.

[calc:/branches/calc/bug-142]
harry = rw

sally = r

In this first example, the user harry has full read and write access onthe /branches/calc/bug-142 directory
in the calc repository, but the user sally has read-only access. Any other users are blocked from accessing

this directory.

mod_dav_svn offers a directive, SVNReposName, which allows administrators to define a
more human-friendly name, of sorts, for a repository:

<Location /svn/calc>
SVNPath /var/svn/calc
SVNReposName "Calculator Application"

This allows mod_dav_svn to identify the repository by something other than merely its
server directory basename—calc, in the previous example—when providing directory listings
of repository content. Be aware, however, that when consulting the access file for authoriza-
tion rules, Subversion uses this repository basename for comparison, not any configured hu-

man-friendly name.

Of course, permissions are inherited from parent to child directory. That means we can specify a subdirectory

with a different access policy for Sally:

[calc:/branches/calc/bug-142]

harry = rw

sally r

give sally write access only to the 'testing' subdir
[calc:/branches/calc/bug-142/testing]

sally = rw

Now Sally can write to the testing subdirectory of the branch, but can still only read other parts. Harry, mean-
while, continues to have complete read/write access to the whole branch.

232

Server Configuration

It's also possible to explicitly deny permission to someone via inheritance rules, by setting the username variable

to nothing:

[calc:/branches/calc/bug-142]
harry = rw

sally = r

[calc:/branches/calc/bug-142/secret]

harry =

In this example, Harry has read/write access to the entire bug-142 tree, but has absolutely no access at all to

the secret subdirectory within it.

match the path itself, and then the parent of the path, then the parent of that, and so on. The net

0 The thing to remember is that the most specific path always matches first. The server tries to
—) effect is that mentioning a specific path in the access file will always override any permissions

inherited from parent directories.

By default, nobody has any access to the repository at all. That means that if you're starting with an empty file,
you'll probably want to give at least read permission to all users at the root of the repository. You can do this by
using the asterisk variable (*), which means “all users”:

This is a common setup; notice that no repository name is mentioned in the section name. This makes all repos-
itories world-readable to all users. Once all users have read access to the repositories, you can give explicit rw
permission to certain users on specific subdirectories within specific repositories.

The access file also allows you to define whole groups of users, much like the Unix /etc/group file:

[groups]
calc-developers = harry, sally, joe
paint-developers = frank, sally, jane

everyone = harry, sally, joe, frank, jane

Groups can be granted access control just like users. Distinguish them with an “at” (@) prefix:

[calc:/projects/calc]

@calc-developers = rw

[paint:/projects/paint]
jane = r

@paint-developers = rw

Another important fact is that group permissions are not overridden by individual user permissions. Rather,
the combination of all matching permissions is granted. In the prior example, Jane is a member of the paint-
developers group, which has read/write access. Combined with the jane = r rule, this still gives Jane read/

233

Server Configuration

write access. Permissions for group members can only be extended beyond the permissions the group already
has. Restricting users who are part of a group to less than their group's permissions is impossible.

Groups can also be defined to contain other groups:

[groups]

calc-developers = harry, sally, joe
paint-developers = frank, sally, Jjane

everyone = @calc-developers, (@paint-developers

Subversion 1.5 brought several useful features to the access file syntax—username aliases, authentication class
tokens, and a new rule exclusion mechanism—all of which further simplify the maintenance of the access file.
We'll describe first the username aliases feature.

Some authentication systems expect and carry relatively short usernames of the sorts we've been describing here
—harry, sally, joe, and so on. But other authentication systems—such as those which use LDAP stores or
SSL client certificates—may carry much more complex usernames. For example, Harry's username in an LDAP-
protected system might be CN=Harold Hacker, OU=Engineers, DC=red-bean, DC=com. With usernames
like that, the access file can become quite bloated with long or obscure usernames that are easy to mistype.
Fortunately, username aliases allow you to have to type the correct complex username only once, in a statement
which assigns to it a more easily digestable alias.

[aliases]

harry = CN=Harold Hacker,OU=Engineers, DC=red-bean, DC=com

sally CN=Sally Swatterbug, OU=Engineers, DC=red-bean, DC=com

joe = CN=Gerald I. Joseph,OU=Engineers,DC=red-bean, DC=com

Once you've defined a set of aliases, you can refer to the users elsewhere in the access file via their aliases in all
the same places you could have instead used their actual usernames. Simply prepend an ampersand to the alias
to distinguish it from a regular username:

[groups]

calc-developers = &harry, &sally, &joe
paint-developers = &frank, &sally, &jane
everyone = @calc-developers, (@paint-developers

You might also choose to use aliases if your users' usernames change frequently. Doing so allows you to need to
update only the aliases table when these username changes occur, instead of doing global-search-and-replace
operations on the whole access file.

Subversion also supports some “magic” tokens for helping you to make rule assignments based on the user's
authentication class. One such token is the Sauthenticated token. Use this token where you would otherwise
specify a username, alias, or group name in your authorization rules to declare the permissions granted to any
user who has authenticated with any username at all. Similarly employed is the Sanonymous token, except that
it matches everyone who has not authenticated with a username.

[calendar:/projects/calendar]

234

Server Configuration

Sanonymous = r

Sauthenticated = rw

Finally, another handy bit of access file syntax magic is the use of the tilde (~) character as an exclusion marker.
In your authorization rules, prefixing a username, alias, group name, or authentication class token with a tilde
character will cause Subversion to apply the rule to users who do not match the rule. Though somewhat unnec-
essarily obfuscated, the following block is equivalent to the one in the previous example:

[calendar:/projects/calendar]
~Sauthenticated = r

~$Sanonymous = rw

A less obvious example might be as follows:

[groups]
calc-developers = &harry, &sally, &joe
calc-owners = &hewlett, &packard

calc = @calc-developers, (@calc-owners

Any calc participant has read-write access...
[calc:/projects/calc]

@calc = rw

...but only allow the owners to make and modify release tags.
[calc:/projects/calc/tags]

~@calc-owners = r

All of the above examples use directories, because defining access rules on them is the most common case. But
is similarly able to restrict access on file paths, too.

[calendar:/projects/calendar/manager.ics]
harry = rw

sally = r

Partial Readability and Checkouts

If you're using Apache as your Subversion server and have made certain subdirectories of your repository
unreadable to certain users, you need to be aware of a possible nonoptimal behavior with svn checkout.

When the client requests a checkout or update over HTTP, it makes a single server request and receives
a single (often large) server response. When the server receives the request, that is the only opportunity
Apache has to demand user authentication. This has some odd side effects. For example, if a certain sub-
directory of the repository is readable only by user Sally, and user Harry checks out a parent directory,
his client will respond to the initial authentication challenge as Harry. As the server generates the large
response, there's no way it can resend an authentication challenge when it reaches the special subdirecto-
ry; thus the subdirectory is skipped altogether, rather than asking the user to reauthenticate as Sally at
the right moment. In a similar way, if the root of the repository is anonymously world-readable, the entire
checkout will be done without authentication—again, skipping the unreadable directory, rather than ask-
ing for authentication partway through.

235

Server Configuration

High-level Logging

Both the Apache httpd and svnserve Subversion servers provide support for high-level logging of Subversion
operations. Configuring each of the server options to provide this level of logging is done differently, of course,
but the output from each is designed to conform to a uniform syntax.

To enable high-level logging in svnserve, you need only use the --10g-file command-line option when start-
ing the server, passing as the value to the option the file to which svnserve should write its log output.

$ svnserve -d -r /path/to/repositories --log-file /var/log/svn.log

Enabling the same in Apache is a bit more involved, but is essentially an extension of Apache's stock log output
configuration mechanisms—see the section called “Apache logging” for details.

The following is a list of Subversion action log messages produced by its high-level logging mechanism, followed
by one or more examples of the log message as it appears in the log output.

Checkout or export

checkout-or-export /path r62 depth=infinity

Commit

commit harry rl100

Diffs

diff /path rl15:20 depth=infinity ignore-ancestry
diff /pathl@l5 /path2@20 depth=infinity ignore-ancestry

Fetch a directory

get-dir /trunk rl7 text

Fetch a file

get-file /path r20 props

Fetch a file revision

get-file-revs /path rl1l2:15 include-merged-revisions

Fetch merge information

get-mergeinfo (/pathl /path?2)

Lock

236

Server Configuration

lock /path steal

Log

log (/pathl, /path2,/path3) r20:90 discover-changed-paths revprops= ()

Replay revisions (svnsync)

replay /path rl9

Revision property change

change-rev-prop r50 propertyname

Revision property list

rev-proplist r34

Status

status /path r62 depth=infinity

Switch

switch /pathA /pathB@50 depth=infinity

Unlock

unlock /path break

Update

update /path rl7 send-copyfrom-args

As a convenience to administrators who wish to post-process their Subversion high-level logging output (perhaps
for reporting or analysis purposes), Subversion source code distributions provide a Python module (located at
tools/server-side/svn_server log parse.py) which can be used to parse Subversion's log output.

Server Optimization

Part of the due diligence when offering a service such as a Subversion server involves capacity planning and
performance tuning. Subversion doesn't tend to be particularly greedy in terms of server resources such as CPU
cycles and memory, but any service can benefit from optimizations, especially when usage of the service sky-
rockets'’. In this section, we'll discuss some ways you can tweak your Subversion server configuration to offer
even better performance and scalability.

"'In Subversion's case, the skyrocketing affect is, of course, due to its cool name. Well, that and its popularity, reliability, ease of use....

237

Server Configuration

Data Caching

Generally speaking, the most expensive part of a Subversion server's job is fetching data from the repository.
Subversion 1.6 attempted to offset this cost by introducing some in-memory caching of certain classes of data
read from the repository. But Subversion 1.7 takes this a step further, not only caching the results of some of the
more costly operations, but also by providing in each of the available servers the means by which fine-tune the
size and some behaviors of the cache.

For svnserve, you can specify the size of the cache using the --memory-cache-size (-M) command-line
option. You can also dictate whether svnserve should attempt to cache content fulltexts and deltas via the
boolean --cache-fulltexts and --cache-txdeltas options, respectively.

$ svnserve -d -r /path/to/repositories \
--memory-cache-size 1024 \
--cache-txdeltas yes \
—--cache-fulltexts yes

mod_dav_svn provides the same degree of cache configurability via httpd.conf directives. The SVNIn-
MemoryCacheSize, SVNCacheFullTexts,and SVNCacheTextDeltas directives may be used at the server
configuration level to control Subversion's data cache characteristics:

<IfModule dav_svn module>
Enable a 1 Gb Subversion data cache for both fulltext and deltas.
SVNInMemoryCacheSize 1048576
SVNCacheTextDeltas On
SVNCacheFullTexts On
</IfModule>

So what settings should you use? Certainly you need to consider what resources are available on your server. To
get any benefit out of the cache at all, you'll probably want to let the cache be at least large enough to hold all the
files which are most commonly accessed in your repository (for example, your project's t runk directory tree).

Setting the memory cache size to 0 will disable this enhanced caching mechanism and cause
Subversion to fall back to using the older cache mechanisms introduced in Subversion 1.6.

data caching functionality.

: Currently, only repositories which make use of the FSFS backend data store make use of this

Network Compression of Data

Compressing the data transmitted across the wire can greatly reduce the size of those network transmissions,
but comes at the cost of server (and client) CPU cycles. Depending on your server's CPU capacity, the typical
access patterns of the clients who use your servers, and the bandwidth of the networks between them, you might
wish to fine tune just how hard your server will work to compress the data it sends across the wire. To assist

238

Server Configuration

with this fine tuning process, Subversion 1.7 offers the --compression (-c) option to svnserve and the SVN-
CompressionLevel directive for mod_dav_svn. Both accept a value which is an integer between 0 and 9
(inclusive), where 9 offers the best compression of wire data, and o disables compression altogether.

For example, on a local area network (LAN) with 1-Gigabit connections, it might not make sense to have the
server compress its network transmissions (which also forces the clients to decompress them), as the network
itselfis so fast that users won't really benefit from the smaller overall network payload. On the other hand, servers
which are accessed primarily by clients with low-bandwidth connections would be doing those clients a favor by
minimizing the overall size of its network communications.

Supporting Multiple Repository Access
Methods

You've seen how a repository can be accessed in many different ways. But is it possible—or safe—for your repos-
itory to be accessed by multiple methods simultaneously? The answer is yes, provided you use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

« Regular system users using a Subversion client (as themselves) to access the repository directly via file://
URLs

« Regular system users connecting to SSH-spawned private svnserve processes (running as themselves), which
access the repository

+ An svnserve process—either a daemon or one launched by inetd—running as a particular fixed user
» An Apache httpd process, running as a particular fixed user

The most common problem administrators run into is repository ownership and permissions. Does every process
(or user) in the preceding list have the rights to read and write the repository's underlying data files? Assuming
you have a Unix-like operating system, a straightforward approach might be to place every potential repository
user into a new svn group, and make the repository wholly owned by that group. But even that's not enough,
because a process may write to the database files using an unfriendly umask—one that prevents access by other
users.

So the next step beyond setting up a common group for repository users is to force every repository-accessing
process to use a sane umask. For users accessing the repository directly, you can make the svn program into a
wrapper script that first runs umask 002 and then runs the real svn client program. You can write a similar
wrapper script for the svnserve program, and add a umask 002 command to Apache's own startup script,
apachectl. For example:

$ cat /usr/bin/svn

#!/bin/sh

umask 002

/usr/bin/svn-real "$@"

Another common problem is often encountered on Unix-like systems. If your repository is backed by Berkeley
DB, for example, it occasionally creates new log files to journal its actions. Even if the Berkeley DB repository

239

Server Configuration

is wholly owned by the svn group, these newly created log files won't necessarily be owned by that same group,
which then creates more permissions problems for your users. A good workaround is to set the group SUID bit
on the repository's db directory. This causes all newly created log files to have the same group owner as the
parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the necessary processes.
It may seem a bit messy and complicated, but the problems of having multiple users sharing write access to
common files are classic ones that are not often elegantly solved.

Fortunately, most repository administrators will never need to have such a complex configuration. Users who
wish to access repositories that live on the same machine are not limited to using file:// access URLs—
they can typically contact the Apache HTTP server or svnserve using 1ocalhost for the server name in their
http:// or svn:// URL. And maintaining multiple server processes for your Subversion repositories is likely
to be more of a headache than necessary. We recommend that you choose a single server that best meets your
needs and stick with it!

The svn+ssh:// Server Checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repository without
permissions problems. If you're confused about all the things that you (as an administrator) need to do on
a Unix-like system, here's a quick checklist that resummarizes some of the topics discussed in this section:

« All of your SSH users need to be able to read and write to the repository, so put all the SSH users into
a single group.

« Make the repository wholly owned by that group.
« Set the group permissions to read/write.

» Your users need to use a sane umask when accessing the repository, so make sure svnserve (/usr/
bin/svnserve, or wherever it lives in $PATH) is actually a wrapper script that runs umask 002 and
executes the real svnserve binary.

« Take similar measures when using svnlook and svnadmin. Either run them with a sane umask or
wrap them as just described.

240

Chapter 7. Customizing Your
Subversion Experience

Version control can be a complex subject, as much art as science, that offers myriad ways of getting stuff done.
Throughout this book, you've read of the various Subversion command-line client subcommands and the options
that modify their behavior. In this chapter, we'll look into still more ways to customize the way Subversion works
for you—setting up the Subversion runtime configuration, using external helper applications, Subversion's in-
teraction with the operating system's configured locale, and so on.

Runtime Configuration Area

Subversion provides many optional behaviors that the user can control. Many of these options are of the kind
that a user would wish to apply to all Subversion operations. So, rather than forcing users to remember com-
mand-line arguments for specifying these options and to use them for every operation they perform, Subversion
uses configuration files, segregated into a Subversion configuration area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values. Usually, this boils
down to a special directory that contains configuration files (the first tier), which are just text files in standard
INTI format where “sections” provide the second tier. You can easily edit these files using your favorite text editor
(such as Emacs or vi), and they contain directives read by the client to determine which of several optional
behaviors the user prefers.

Configuration Area Layout

The first time the svn command-line client is executed, it creates a per-user configuration area. On Unix-like
systems, this area appears as a directory named . subversion in the user's home directory. On Win32 systems,
Subversion creates a folder named Subversion, typically inside the Application Data area of the user's
profile directory (which, by the way, is usually a hidden directory). However, on this platform, the exact location
differs from system to system and is dictated by the Windows Registry." We will refer to the per-user configura-

tion area using its Unix name, . subversion.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide config-
uration area. This gives system administrators the ability to establish defaults for all users on a given machine.
Note that the system-wide configuration area alone does not dictate mandatory policy—the settings in the per-
user configuration area override those in the system-wide one, and command-line arguments supplied to the
svn program have the final word on behavior. On Unix-like platforms, the system-wide configuration area is
expected to be the /etc/subversion directory; on Windows machines, it looks for a Subversion directory
inside the common Application Data location (again, as specified by the Windows Registry). Unlike the per-
user case, the svn program does not attempt to create the system-wide configuration area.

The per-user configuration area currently contains three files—two configuration files (config and servers),
and a README . txt file, which describes the INT format. At the time of their creation, the files contain default
values for each of the supported Subversion options, mostly commented out and grouped with textual descrip-
tions about how the values for the key affect Subversion's behavior. To change a certain behavior, you need only
to load the appropriate configuration file into a text editor, and to modify the desired option's value. If at any

'The APPDATA environment variable points to the Application Data area, soyou can always refer to this folder as $APPDATA%\ Subversion.

241

Customizing Your Sub-
version Experience

time you wish to have the default configuration settings restored, you can simply remove (or rename) your con-
figuration directory and then run some innocuous svn command, such as svn --version. A new configura-
tion directory with the default contents will be created.

Subversion also allows you to override individual configuration option values at the command line via the --
config-option option, which is especially useful if you need to make a (very) temporary change in behavior.
For more about this option's proper usage, see the section called “svn Options”.

The per-user configuration area also contains a cache of authentication data. The auth directory holds a set of
subdirectories that contain pieces of cached information used by Subversion's various supported authentication
methods. This directory is created in such a way that only the user herself has permission to read its contents.

Configuration and the Windows Registry

In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms may
also use the Windows Registry to hold the configuration data. The option names and their values are the same as
in the INI files. The “file/section” hierarchy is preserved as well, though addressed in a slightly different fashion—
in this schema, files and sections are just levels in the Registry key tree.

Subversion looks for system-wide configuration values under the HKEY LOCAL MACHINE\Soft-
ware\Tigris.org\Subversion key. For example, the global-ignores option, which is in the miscel-
lany section of the config file, would be found at HKEY LOCAL MACHINE\Software\Tigris.org\Sub-
version\Config\Miscellany\global-ignores. Per-user configuration values should be stored under
HKEY CURRENT USER\Software\Tigris.org\Subversion.

Registry-based configuration options are parsed before their file-based counterparts, so they are overridden by
values found in the configuration files. In other words, Subversion looks for configuration information in the
following locations on a Windows system; lower-numbered locations take precedence over higher-numbered
locations:

1. Command-line options

2. The per-user INI files

3. The per-user Registry values

4. The system-wide INTI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented out.” However,
Subversion will ignore any option key whose name begins with a hash (#) character. This allows you to effectively
comment out a Subversion option without deleting the entire key from the Registry, obviously simplifying the
process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry and will not attempt to create a
default configuration area there. You can create the keys you need using the REGEDIT program. Alternatively,
you can create a . reg file (such as the one in Example 7.1, “Sample registration entries (.reg) file”), and then
double-click on that file's icon in the Explorer shell, which will cause the data to be merged into your Registry.

Example 7.1. Sample registration entries (.reg) file

REGEDIT4

242

Customizing Your Sub-
version Experience

[HKEY LOCAL MACHINE\Software\Tigris.org\Subversion\Servers\groups]

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\global]
"#http-auth-types"="basic;digest;negotiate"
"#http-compression"="yes"
"#http-library"=""
"#http-proxy-exceptions"=""
"#http-proxy-host"=""
"#http-proxy-password"=""
"#http-proxy-port"=""
"#http-proxy-username"=""
"#http-timeout"="0"

"#neon-debug-mask"=""
"#ssl-authority-files"=""
"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""
"#ssl-pkcsll-provider"=""

"#ssl-trust-default-ca"=""

"#store-auth-creds"="yes"
"#store-passwords"="yes"
"#store-plaintext-passwords"="ask"

"#store-ssl-client-cert-pp"="yes"
"#store-ssl-client-cert-pp-plaintext"="ask"

"#username"=""

[HKEY CURRENT USER\Software\Tigris.org\Subversion\Config\auth]

"#password-stores"="windows-cryptoapi"

[HKEY CURRENT USER\Software\Tigris.org\Subversion\Config\helpers]
"#diff-cmd"=""

"#diff-extensions"="-u"

"#diff3-cmd"=""

"#diff3-has-program-arg"=""

"#editor-cmd"="notepad"

"#merge-tool-cmd"=""
[HKEY CURRENT USER\Software\Tigris.org\Subversion\Config\tunnels]

[HKEY CURRENT USER\Software\Tigris.org\Subversion\Config\miscellany]
"#enable-auto-props"="no"

"#global-ignores"="*.0 *.lo *.la *.al .libs *.so *.so0.[0-9]* *.a *.pyc *.pyo *.rej *~
#*# .#* .*.swp .DS Store"

"#interactive-conflicts"="yes"

"#log-encoding"=""

"#mime-types-file"=""

"#no-unlock"="no"

"#preserved-conflict-file-exts"="doc ppt xls od?"

"#use-commit-times"="no"

[HKEY CURRENT USER\Software\Tigris.org\Subversion\Config\auto-props]

Example 7.1, “Sample registration entries (.reg) file” shows the contents of a . req file, which contains some of the
most commonly used configuration options and their default values. Note the presence of both system-wide (for

243

Customizing Your Sub-
version Experience

network proxy-related options) and per-user settings (editor programs and password storage, among others).
Also note that all the options are effectively commented out. You need only to remove the hash (#) character
from the beginning of the option names and set the values as you desire.

Configuration Options

In this section, we will discuss the specific runtime configuration options that Subversion currently supports.

Servers

The servers file contains Subversion configuration options related to the network layers. There are two special
sections in this file— [groups] and [global].The [groups] section is essentially a cross-reference table. The
keys in this section are the names of other sections in the file; their values are globs—textual tokens that possibly
contain wildcard characters—that are compared against the hostnames of the machine to which Subversion
requests are sent.

[groups]
beanie-babies = *.red-bean.com

collabnet = svn.collab.net

[beanie-babies]
[collabnet]

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach with a
group name under the [groups] section. If a match is made, Subversion then looks for a section in the servers
file whose name is the matched group's name. From that section, it reads the actual network configuration set-
tings.

The [global] section contains the settings that are meant for all of the servers not matched by one of the globs
under the [groups] section. The options available in this section are exactly the same as those that are valid
for the other server sections in the file (except, of course, the special [groups] section), and are as follows:

http-auth-types
This is a semicolon-delimited list of HTTP authentication types which the client will deem acceptable. Valid
types are basic,digest, and negotiate, with the default behavior being acceptance of any these authen-
tication types. A client which insists on not transmitting authentication credentials in cleartext might, for
example, be configured such that the value of this option is digest;negotiate—omitting basic from
the list. (Note that this setting is only honored by Subversion's Neon-based HTTP provider module.)

http-compression
This specifies whether Subversion should attempt to compress network requests made to DAV-ready servers.
The default value is yes (though compression will occur only if that capability is compiled into the network
layer). Set this to no to disable compression, such as when debugging network transmissions.

http-library
Subversion provides a pair of repository access modules that understand its WebDAV network protocol.
The original one, which shipped with Subversion 1.0, is 1ibsvn ra neon (though back then it was called

244

Customizing Your Sub-
version Experience

libsvn_ ra_ dav). Newer Subversion versions also provide 1ibsvn ra serf, which uses a different un-
derlying implementation and aims to support some of the newer HTTP concepts.

At this point, 1ibsvn ra serf is still considered experimental, though it appears to work in the common
cases quite well. To encourage experimentation, Subversion provides the ht tp-1ibrary runtime configu-
ration option to allow users to specify (generally, or in a per-server-group fashion) which WebDAV access
module they'd prefer to use—neon or serf.

http-proxy-exceptions
This specifies a comma-separated list of patterns for repository hostnames that should be accessed directly,
without using the proxy machine. The pattern syntax is the same as is used in the Unix shell for filenames.
A repository hostname matching any of these patterns will not be proxied.

http-proxy-host
This specifies the hostname of the proxy computer through which your HTTP-based Subversion requests
must pass. It defaults to an empty value, which means that Subversion will not attempt to route HTTP re-
quests through a proxy computer, and will instead attempt to contact the destination machine directly.

http-proxy-password
This specifies the password to supply to the proxy machine. It defaults to an empty value.

http-proxy-port
This specifies the port number on the proxy host to use. It defaults to an empty value.

http-proxy-username

This specifies the username to supply to the proxy machine. It defaults to an empty value.

http-timeout
This specifies the amount of time, in seconds, to wait for a server response. If you experience problems with
a slow network connection causing Subversion operations to time out, you should increase the value of this
option. The default value is 0, which instructs the underlying HTTP library, Neon, to use its default timeout
setting.

neon-debug-mask
This is an integer mask that the underlying HTTP library, Neon, uses for choosing what type of debugging
output to yield. The default value is 0, which will silence all debugging output. For more information about
how Subversion makes use of Neon, see Chapter 8, Embedding Subversion.

ssl-authority-files
This is a semicolon-delimited list of paths to files containing certificates of the certificate authorities (or CAs)
that are accepted by the Subversion client when accessing the repository over HTTPS.

ssl-client-cert-file
If a host (or set of hosts) requires an SSL client certificate, you'll normally be prompted for a path to your
certificate. By setting this variable to that same path, Subversion will be able to find your client certificate
automatically without prompting you. There's no standard place to store your certificate on disk; Subversion
will grab it from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you for the passphrase
whenever the certificate is used. If you find this annoying (and don't mind storing the password in the
servers file), you can set this variable to the certificate's passphrase. You won't be prompted anymore.

245

Customizing Your Sub-
version Experience

ssl-pkcsll-provider
The value of this option is the name of the PKCS#11 provider from which an SSL client certificate will be
drawn (if the server asks for one). This setting is only honored by Subversion's Neon-based HTTP provider
module.

ssl-trust-default-ca
Set this variable to yes if you want Subversion to automatically trust the set of default CAs that ship with
OpenSSL.

store-auth-creds
This setting is the same as store-passwords, except that it enables or disables on-disk caching of all au-
thentication information: usernames, passwords, server certificates, and any other types of cacheable cre-
dentials.

store-passwords

This instructs Subversion to cache, or not to cache, passwords that are supplied by the user in response to
server authentication challenges. The default value is yes. Set this to no to disable this on-disk password
caching. You can override this option for a single instance of the svn command using the --no-auth-
cache command-line parameter (for those subcommands that support it). For more information regarding
that, see the section called “Caching credentials”. Note that regardless of how this option is configured,
Subversion will not store passwords in plaintext unless the store-plaintext-passwords option is also
set to yes.

store-plaintext-passwords
This variable is only important on UNIX-like systems. It controls what the Subversion client does in case
the password for the current authentication realm can only be cached on disk in unencrypted form, in the
~/.subversion/auth/ caching area. You can set it to yes or no to enable or disable caching of passwords
in unencrypted form, respectively. The default setting is ask, which causes the Subversion client to ask you
each time a new password is about to be added to the ~/ . subversion/auth/ caching area.

store-ssl-client-cert-pp
This option controls whether Subversion will cache SSL client certificate passphrases provided by the user.
Its value defaults to yes. Set this to no to disable this passphrase caching.

store-ssl-client-cert-pp-plaintext
This option controls whether Subversion, when attempting to cache an SSL client certificate passphrase, will
be allowed to do so using its on-disk plaintext storage mechanism. The default value of this option is ask,
which causes the Subversion client to ask you each time a new client certificate passphrase is about to be
added to the ~/.subversion/auth/ caching area. Set this option's value to yes or no to indicate your
preference and avoid related prompts.

Config

The config file contains the rest of the currently available Subversion runtime options—those not related to
networking. There are only a few options in use as of this writing, but they are again grouped into sections in
expectation of future additions.

The [auth] section contains settings related to Subversion's authentication and authorization against the repos-
itory. It contains the following:

246

Customizing Your Sub-
version Experience

password-stores
This comma-delimited list specifies which (if any) system-provided password stores Subversion should at-
tempt to use when saving and retrieving cached authentication credentials, and in what order Subversion
should prefer them. The default value is gnome-keyring, kwallet, keychain, windows-cryp-
to-api, representing the GNOME Keyring, KDE Wallet, Mac OS X Keychain, and Microsoft Windows cryp-
tography API, respectively. Listed stores which are not available on the system are ignored.

store-passwords
This option has been deprecated from the config file. It now lives as a per-server configuration item in the
servers configuration area. See the section called “Servers” for details.

store-auth-creds
This option has been deprecated from the config file. It now lives as a per-server configuration item in the
servers configuration area. See the section called “Servers” for details.

The [helpers] section controls which external applications Subversion uses to accomplish its tasks. Valid
options in this section are:

diff-cmd
This specifies the absolute path of a differencing program, used when Subversion generates “diff” output
(such as when using the svn diff command). By default, Subversion uses an internal differencing library—
setting this option will cause it to perform this task using an external program. See the section called “Using
External Differencing and Merge Tools” for more details on using such programs.

diff-extensions
Like the --extensions (-x) command-line option, this specifies additional options passed to the file con-
tent differencing engine. The set of meaningful extension options differs depending on whether the client
is using Subversion's internal differencing engine or an external mechanism. See the output of svn help
diff for details. The default value for this option is -u.

diff3-cmd
This specifies the absolute path of a three-way differencing program. Subversion uses this program to merge
changes made by the user with those received from the repository. By default, Subversion uses an internal
differencing library—setting this option will cause it to perform this task using an external program. See the
section called “Using External Differencing and Merge Tools” for more details on using such programs.

diff3-has-program-arg
This flag should be set to t rue if the program specified by the di f £3-cmd option accepts a -~—-diff-pro-
gram command-line parameter.

editor-cmd
This specifies the program Subversion will use to query the user for certain types of textual metadata or
when interactively resolving conflicts. See the section called “Using External Editors” for more details on
using external text editors with Subversion.

merge-tool-cmd
This specifies the program that Subversion will use to perform three-way merge operations on your ver-
sioned files. See the section called “Using External Differencing and Merge Tools” for more details on using
such programs.

The [tunnels] section allows you to define new tunnel schemes for use with svnserve and svn:// client
connections. For more details, see the section called “Tunneling over SSH”.

247

Customizing Your Sub-
version Experience

The miscellany section is where everything that doesn't belong elsewhere winds up.” In this section, you can
find:

enable-auto-props
This instructs Subversion to automatically set properties on newly added or imported files. The default val-
ue is no, so set this to yes to enable this feature. The [auto-props] section of this file specifies which
properties are to be set on which files.

global-ignores

When running the svn status command, Subversion lists unversioned files and directories along with
the versioned ones, annotating them with a ? character (see the section called “See an overview of your
changes”). Sometimes it can be annoying to see uninteresting, unversioned items—for example, object files
that result from a program's compilation—in this display. The global-ignores option is a list of white-
space-delimited globs that describe the names of files and directories that Subversion should not display
unless they are versioned. The default valueis *.0 *.1o *.la *.al .libs *.so *.s0.[0-9]* *.a
*.pyc *.pyo *.rej *~ #*# .4#* .*.swp .DS Store

As well as svn status, the svn add and svn import commands also ignore files that match the list when
they are scanning a directory. You can override this behavior for a single instance of any of these commands
by explicitly specifying the filename, or by using the --no-ignore command-line flag.

For information on finer-grained control of ignored items, see the section called “Ignoring Unversioned
Items”.

interactive-conflicts
This is a Boolean option that specifies whether Subversion should try to resolve conflicts interactively. If its
value is yes (which is the default value), Subversion will prompt the user for how to handle conflicts in the
manner demonstrated in the section called “Resolve Any Conflicts”. Otherwise, it will simply flag the conflict
and continue its operation, postponing resolution to a later time.

log-encoding
This variable sets the default character set encoding for commit log messages. It's a permanent form of the
--encoding option (see the section called “svn Options”). The Subversion repository stores log messages
in UTF-8 and assumes that your log message is written using your operating system's native locale. You
should specify a different encoding if your commit messages are written in any other encoding.

mime-types-file
This option, new to Subversion 1.5, specifies the path of a MIME types mapping file, such as themime . t ypes
file provided by the Apache HTTP Server. Subversion uses this file to assign MIME types to newly added
or imported files. See the section called “Automatic Property Setting” and the section called “File Content
Type” for more about Subversion's detection and use of file content types.

no-unlock
This Boolean option corresponds to svn commit's --no-unlock option, which tells Subversion not to
release locks on files you've just committed. If this runtime option is set to ye s, Subversion will never release
locks automatically, leaving you to run svn unlock explicitly. It defaults to no.

preserved-conflict-file-exts
The value of this option is a space-delimited list of file extensions that Subversion should preserve when
generating conflict filenames. By default, the list is empty. This option is new to Subversion 1.5.

2Anyone for potluck dinner?

248

Customizing Your Sub-
version Experience

When Subversion detects conflicting file content changes, it defers resolution of those conflicts to the user.
To assist in the resolution, Subversion keeps pristine copies of the various competing versions of the file in
the working copy. By default, those conflict files have names constructed by appending to the original file-
name a custom extension such as .mine or . REV(where REVis a revision number). A mild annoyance with
this naming scheme is that on operating systems where a file's extension determines the default application
used to open and edit that file, appending a custom extension prevents the file from being easily opened by
its native application. For example, if the file ReleaseNotes.pdf was conflicted, the conflict files might
be named ReleaseNotes.pdf.mine or ReleaseNotes.pdf.r4231. While your system might be con-
figured to use Adobe's Acrobat Reader to open files whose extensions are . pdf, there probably isn't an ap-
plication configured on your system to open all files whose extensions are . r4231.

You can fix this annoyance by using this configuration option, though. For files with one of the specified
extensions, Subversion will append to the conflict file names the custom extension just as before, but then
also reappend the file's original extension. Using the previous example, and assuming that pdf is one of
the extensions configured in this list thereof, the conflict files generated for ReleaseNotes.pdf would
instead be named ReleaseNotes.pdf.mine.pdf and ReleaseNotes.pdf.r4231.pdf. Because each
file ends in . pdf, the correct default application will be used to view them.

use-commit-times

Normally your working copy files have timestamps that reflect the last time they were touched by any
process, whether your own editor or some svn subcommand. This is generally convenient for people devel-
oping software, because build systems often look at timestamps as a way of deciding which files need to be
recompiled.

In other situations, however, it's sometimes nice for the working copy files to have timestamps that reflect
the last time they were changed in the repository. The svn export command always places these “last-
commit timestamps” on trees that it produces. By setting this config variable to yes, the svn checkout,
svn update, svn switch, and svn revert commands will also set last-commit timestamps on files that
they touch.

The [auto-props] section controls the Subversion client's ability to automatically set properties on files

when they are added or imported. It contains any number of key-value pairs in the format PATTERN =
PROPNAME=VALUE [; PROPNAME=VALUE ...],where PATTERNIis a file pattern that matches one or more file-
names and the rest of the line is a semicolon-delimited set of property assignments. (If you need to use a semi-

colon in your property's name or value, you can escape it by doubling it.)

$ cat ~/.subversion/config

[auto-props]

@

= svn:eol-style=native

*.html = svn:eol-style=native;svn:mime-type=text/html;; charset=UTF8

*.sh = svn:eol-style=native;svn:executable
$ cd projects/myproject
S svn status

)

w» P AN

www/index.html

svn add www/index.html

www/index.html

svn diff www/index.html

249

Customizing Your Sub-

version Experience
" Property changes on: www/index.html

Added: svn:mime-type

-0,0 +1 #4#
+text/html; charset=UTF8
Added: svn:eol-style

-0,0 +1

+native

$

Multiple matches on a file will result in multiple propsets for that file; however, there is no guarantee that au-
to-props will be applied in the order in which they are listed in the config file, so you can't have one rule “over-
ride” another. You can find several examples of auto-props usage in the config file. Lastly, don't forget to set
enable-auto-props to yes in the mi scellany section if you want to enable auto-props.

Localization

Localization is the act of making programs behave in a region-specific way. When a program formats numbers
or dates in a way specific to your part of the world or prints messages (or accepts input) in your native language,
the program is said to be localized. This section describes steps Subversion has made toward localization.

Understanding Locales

Most modern operating systems have a notion of the “current locale”—that is, the region or country whose lo-
calization conventions are honored. These conventions—typically chosen by some runtime configuration mech-
anism on the computer—affect the way in which programs present data to the user, as well as the way in which
they accept user input.

On most Unix-like systems, you can check the values of the locale-related runtime configuration options by
running the locale command:

S locale

LANG=

LC COLLATE="C"
LC CTYPE="C"
LC_MESSAGES="C"
LC MONETARY="C"
LC NUMERIC="C"
LC TIME="C"
LC_ALL="C"

$

The output is a list of locale-related environment variables and their current values. In this example, the variables
are all set to the default C locale, but users can set these variables to specific country/language code combinations.
For example, if one were to set the LC_TIME variable to fr Ca, programs would know to present time and
date information formatted according to a French-speaking Canadian's expectations. And if one were to set the
LC_MESSAGES variable to zh TW, programs would know to present human-readable messages in Traditional
Chinese. Setting the LC_ALL variable has the effect of changing every locale variable to the same value. The value
of LANG is used as a default value for any locale variable that is unset. To see the list of available locales on a
Unix system, run the command locale -a.

250

Customizing Your Sub-
version Experience

On Windows, locale configuration is done via the “Regional and Language Options” control panel item. There
you can view and select the values of individual settings from the available locales, and even customize (at a
sickening level of detail) several of the display formatting conventions.

Subversion's Use of Locales

The Subversion client, svn, honors the current locale configuration in two ways. First, it notices the value of the
LC_ MESSAGES variable and attempts to print all messages in the specified language. For example:

$ export LC MESSAGES=de DE

$ svn help cat

cat: Gibt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[QREV]...

This behavior works identically on both Unix and Windows systems. Note, though, that while your operating
system might have support for a certain locale, the Subversion client still may not be able to speak the particu-
lar language. In order to produce localized messages, human volunteers must provide translations for each lan-
guage. The translations are written using the GNU gettext package, which results in translation modules that end
with the . mo filename extension. For example, the German translation file is named de . mo. These translation
files are installed somewhere on your system. On Unix, they typically live in /usr/share/locale/, while on
Windows they're often found in the share\locale\ folder in Subversion's installation area. Once installed,
a module is named after the program for which it provides translations. For example, the de . mo file may ulti-
mately end up installed as /usr/share/locale/de/LC MESSAGES/subversion.mo. By browsing the in-
stalled .mo files, you can see which languages the Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The repository stores all
paths, filenames, and log messages in Unicode, encoded as UTF-8. In that sense, the repository is internation-
alized—that is, the repository is ready to accept input in any human language. This means, however, that the
Subversion client is responsible for sending only UTF-8 filenames and log messages into the repository. To do
this, it must convert the data from the native locale into UTF-8.

For example, suppose you create a file named caffe. txt, and then when committing the file, you write the log
message as “Adesso il caffe e pit forte.” Both the filename and the log message contain non-ASCII characters, but
because your locale is set to it IT, the Subversion client knows to interpret them as Italian. It uses an Italian
character set to convert the data to UTF-8 before sending it off to the repository.

Note that while the repository demands UTF-8 filenames and log messages, it does not pay attention to file con-
tents. Subversion treats file contents as opaque strings of bytes, and neither client nor server makes an attempt
to understand the character set or encoding of the contents.

Character Set Conversion Errors

While using Subversion, you might get hit with an error related to character set conversions:

svn: E000022: Can't convert string from native encoding to 'UTF-8':

svn: E000022: Can't convert string from 'UTF-8' to native encoding:

251

Customizing Your Sub-
version Experience
Errors such as this typically occur when the Subversion client has received a UTF-8 string from the repos-
itory, but not all of the characters in that string can be represented using the encoding of the current locale.
For example, if your locale is en US but a collaborator has committed a Japanese filename, you're likely
to see this error when you receive the file during an svn update.

The solution is either to set your locale to something that can represent the incoming UTF-8 data, or to
change the filename or log message in the repository. (And don't forget to slap your collaborator's hand
—projects should decide on common languages ahead of time so that all participants are using the same
locale.)

Using External Editors

The most obvious way to get data into Subversion is through the addition of files to version control, commit-
ting changes to those files, and so on. But other pieces of information besides merely versioned file data live in
your Subversion repository. Some of these bits of information—commit log messages, lock comments, and some
property values—tend to be textual in nature and are provided explicitly by users. Most of this information can
be provided to the Subversion command-line client using the --message (-m) and --file (-F) options with
the appropriate subcommands.

Each of these options has its pros and cons. For example, when performing a commit, --file (-F) works well
if you've already prepared a text file that holds your commit log message. If you didn't, though, you can use
--message (-m) to provide a log message on the command line. Unfortunately, it can be tricky to compose
anything more than a simple one-line message on the command line. Users want more flexibility—multiline,
free-form log message editing on demand.

Subversion supports this by allowing you to specify an external text editor that it will launch as necessary to give
you a more powerful input mechanism for this textual metadata. There are several ways to tell Subversion which
editor you'd like use. Subversion checks the following things, in the order specified, when it wants to launch
such an editor:

1. ——-editor-cmd command-line option

2. SVN_EDITOR environment variable

3. editor-cmd runtime configuration option

4. VISUAL environment variable

5. EDITOR environment variable

6. Possibly, a fallback value built into the Subversion libraries (not present in the official builds)

The value of any of these options or variables is the beginning of a command line to be executed by the shell.
Subversion appends to that command line a space and the pathname of a temporary file to be edited. So, to
be used with Subversion, the configured or specified editor needs to support an invocation in which its last
command-line parameter is a file to be edited, and it should be able to save the file in place and return a zero
exit code to indicate success.

As noted, external editors can be used to provide commit log messages to any of the committing subcommands
(such as svn commit or import, svn mkdir or delete when provided a URL target, etc.), and Subversion
will try to launch the editor automatically if you don't specify either of the -~-message (-m) or --file (-F)

252

Customizing Your Sub-
version Experience

options. The svn propedit command is built almost entirely around the use of an external editor. And beginning
in version 1.5, Subversion will also use the configured external text editor when the user asks it to launch an
editor during interactive conflict resolution. Oddly, there doesn't appear to be a way to use external editors to
interactively provide lock comments.

Using External Differencing and Merge
Tools

The interface between Subversion and external two- and three-way differencing tools harkens back to a time
when Subversion's only contextual differencing capabilities were built around invocations of the GNU diffutils
toolchain, specifically the diff and diffg utilities. To get the kind of behavior Subversion needed, it called these
utilities with more than a handful of options and parameters, most of which were quite specific to the utilities.
Some time later, Subversion grew its own internal differencing library, and as a failover mechanism, the --
diff-cmd and --diff3-cmd options were added to the Subversion command-line client so that users could
more easily indicate that they preferred to use the GNU diff and diff3 utilities instead of the newfangled internal
diff library. If those options were used, Subversion would simply ignore the internal diff library, and fall back to
running those external programs, lengthy argument lists and all. And that's where things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for specifying that Sub-
version should use the external GNU diff and diff3 utilities located at a particular place on the system could be
applied toward the use of other differencing tools, too. After all, Subversion didn't actually verify that the things
it was being told to run were members of the GNU diffutils toolchain. But the only configurable aspect of using
those external tools is their location on the system—not the option set, parameter order, and so on. Subversion
continues to throw all those GNU utility options at your external diff tool regardless of whether that program
can understand those options. And that's where things get unintuitive for most users.

The decision on when to fire off a contextual two- or three-way diff as part of a larger Subver-
<> sion operation is made entirely by Subversion and is affected by, among other things, whether
the files being operated on are human-readable as determined by their svn : mime-type prop-
erty. This means, for example, that even if you had the niftiest Microsoft Word-aware differ-
encing or merging tool in the universe, it would never be invoked by Subversion as long as
your versioned Word documents had a configured MIME type that denoted that they were not
human-readable (such as application/msword). For more about MIME type settings, see

the section called “File Content Type”

Much later, Subversion 1.5 introduced interactive resolution of conflicts (described in the section called “Resolve
Any Conflicts”). One of the options that this feature provides to users is the ability to interactively launch a third-
party merge tool. If this action is taken, Subversion will check to see if the user has specified such a tool for use
in this way. Subversion will first check the SVN_ MERGE environment variable for the name of an external merge
tool. If that variable is not set, it will look for the same information in the value of the nerge-tool-cmd runtime
configuration option. Upon finding a configured external merge tool, it will invoke that tool.

While the general purposes of the three-way differencing and merge tools are roughly the same
0/ (finding a way to make separate-but-overlapping file changes live in harmony), Subversion

exercises each of these options at different times and for different reasons. The internal three-
way differencing engine and its optional external replacement are used when interaction with

the user is not expected. In fact, significant delay introduced by such a tool can actually result

253

Customizing Your Sub-
version Experience
in the failure of some time-sensitive Subversion operations. It's the external merge tool that
is intended to be invoked interactively.

Now, while the interface between Subversion and an external merge tool is significantly less convoluted than
that between Subversion and the diff and diff3 tools, the likelihood of finding such a tool whose calling conven-
tions exactly match what Subversion expects is still quite low. The key to using external differencing and merge
tools with Subversion is to use wrapper scripts, which convert the input from Subversion into something that
your specific differencing tool can understand, and then convert the output of your tool back into a format that
Subversion expects. The following sections cover the specifics of those expectations.

External diff

Subversion calls external diff programs with parameters suitable for the GNU diff utility, and expects only that
the external program will return with a successful error code per the GNU diff definition thereof. For most
alternative diff programs, only the sixth and seventh arguments—the paths of the files that represent the left
and right sides of the diff, respectively—are of interest. Note that Subversion runs the diff program once per
modified file covered by the Subversion operation, so if your program runs in an asynchronous fashion (or is
“backgrounded”), you might have several instances of it all running simultaneously. Finally, Subversion expects
that your program return an error code of 1 if your program detected differences, or o if it did not—any other

error code is considered a fatal error.>

Example 7.2, “diffwrap.py” and Example 7.3, “diffwrap.bat” are templates for external diff tool wrappers in the
Python and Windows batch scripting languages, respectively.

Example 7.2. diffwrap.py

#!/usr/bin/env python
import sys

import os

Configure your favorite diff program here.
DIFF = "/usr/local/bin/my-diff-tool"

Subversion provides the paths we need as the last two parameters.
LEFT = sys.argv[-2]
RIGHT = sys.argv[-1]

Call the diff command (change the following line to make sense for
your diff program) .
cmd = [DIFF, '--left', LEFT, '--right', RIGHT]

os.execv (cmd[0], cmd)

Return an errorcode of 0 if no differences were detected, 1 if some were.

Any other errorcode will be treated as fatal.

Example 7.3. diffwrap.bat

3The GNU diff manual page puts it this way: “An exit status of 0 means no differences were found, 1 means some differences were found, and
2 means trouble.”

254

Customizing Your Sub-

version Experience
@ECHO OFF

REM Configure your favorite diff program here.
SET DIFF="C:\Program Files\Funky Stuff\My Diff Tool.exe"

REM Subversion provides the paths we need as the last two parameters.
REM These are parameters 6 and 7 (unless you use svn diff -x, in

REM which case, all bets are off).

SET LEFT=%6

SET RIGHT=%7

REM Call the diff command (change the following line to make sense for
REM your diff program) .
$DIFFS% —--left SLEFT% --right %RIGHTS

REM Return an errorcode of 0 if no differences were detected, 1 if some were.

REM Any other errorcode will be treated as fatal.

External diff3

Subversion invokes three-way differencing programs to perform non-interactive merges. When configured to
use an external three-way differencing program, it executes that program with parameters suitable for the GNU
diffg utility, expecting that the external program will return with a successful error code and that the full file
contents that result from the completed merge operation are printed on the standard output stream (so that
Subversion can redirect them into the appropriate version-controlled file). For most alternative merge programs,
only the ninth, tenth, and eleventh arguments, the paths of the files which represent the “mine”, “older”, and
“yours” inputs, respectively, are of interest. Note that because Subversion depends on the output of your merge
program, your wrapper script must not exit before that output has been delivered to Subversion. When it finally
does exit, it should return an error code of o if the merge was successful, or 1 if unresolved conflicts remain in

the output—any other error code is considered a fatal error.

Example 7.4, “diffgwrap.py” and Example 7.5, “diff3wrap.bat” are templates for external three-way differencing
tool wrappers in the Python and Windows batch scripting languages, respectively.

Example 7.4. diffgwrap.py

#!/usr/bin/env python
import sys

import os

Configure your favorite three-way diff program here.
DIFF3 = "/usr/local/bin/my-diff3-tool"

Subversion provides the paths we need as the last three parameters.
MINE = sys.argv[-3]
OLDER = sys.argv[-2]
YOURS = sys.argv[-1]

Call the three-way diff command (change the following line to make
sense for your three-way diff program) .
cmd = [DIFF3, '--older', OLDER, '--mine', MINE, '--yours', YOURS]

255

Customizing Your Sub-

version Experience
os.execv (cmd[0], cmd)

After performing the merge, this script needs to print the contents
of the merged file to stdout. Do that in whatever way you see fit.

Return an errorcode of 0 on successful merge, 1 if unresolved conflicts

+= o oW

remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diffgwrap.bat

@ECHO OFF

REM Configure your favorite three-way diff program here.
SET DIFF3="C:\Program Files\Funky Stuff\My Diff3 Tool.exe"

REM Subversion provides the paths we need as the last three parameters.
REM These are parameters 9, 10, and 11. But we have access to only
REM nine parameters at a time, so we shift our nine-parameter window
REM twice to let us get to what we need.

SHIFT

SHIFT

SET MINE=%7

SET OLDER=%8

SET YOURS=%9

REM Call the three-way diff command (change the following line to make
REM sense for your three-way diff program).
$DIFF3% --older %OLDER%$ --mine $MINES$ --yours S$YOURSS

REM After performing the merge, this script needs to print the contents
REM of the merged file to stdout. Do that in whatever way you see fit.
REM Return an errorcode of 0 on successful merge, 1 if unresolved conflicts

REM remain in the result. Any other errorcode will be treated as fatal.

External merge

Subversion optionally invokes an external merge tool as part of its support for interactive conflict resolution.
It provides as arguments to the merge tool the following: the path of the unmodified base file, the path of the
“theirs” file (which contains upstream changes), the path of the “mine” file (which contains local modifications),
the path of the file into which the final resolved contents should be stored by the merge tool, and the working
copy path of the conflicted file (relative to the original target of the merge operation). The merge tool is expected
to return an error code of 0 to indicate success, or 1 to indicate failure.

Example 7.6, “mergewrap.py” and Example 7.7, “mergewrap.bat” are templates for external merge tool wrappers
in the Python and Windows batch scripting languages, respectively.

Example 7.6. mergewrap.py

#!/usr/bin/env python
import sys

import os

256

Customizing Your Sub-

version Experience
Configure your favorite merge program here.
MERGE = "/usr/local/bin/my-merge-tool"

Get the paths provided by Subversion.
BASE = sys.argv[l]
THEIRS = sys.argv[2]

MERGED = sys.argv[4]

[
[
MINE = sys.argv[3]
[
WCPATH = sys.argv[5]

Call the merge command (change the following line to make sense for

your merge program) .

cmd = [DIFF3, '--base', BASE, '--mine', MINE, '--theirs', THEIRS,
'-—outfile', MERGED]

os.execv (cmd[0], cmd)

Return an errorcode of 0 if the conflict was resolved; 1 otherwise.

Any other errorcode will be treated as fatal.

Example 7.7. mergewrap.bat

@ECHO OFF

REM Configure your favorite merge program here.
SET DIFF3="C:\Program Files\Funky Stuff\My Merge Tool.exe"

REM Get the paths provided by Subversion.
SET BASE=%1

SET THEIRS=%2

SET MINE=%3

SET MERGED=%4

SET WCPATH=%5

REM Call the merge command (change the following line to make sense for
REM your merge program) .
$DIFF3% —--base $BASE$ --mine S$MINES --theirs $THEIRS$ --outfile $MERGEDS$

REM Return an errorcode of 0 if the conflict was resolved; 1 otherwise.

REM Any other errorcode will be treated as fatal.

Summary

Sometimes there's a single right way to do things; sometimes there are many. Subversion's developers under-
stand that while the majority of its exact behaviors are acceptable to most of its users, there are some corners
of its functionality where such a universally pleasing approach doesn't exist. In those places, Subversion offers
users the opportunity to tell it how they want it to behave.

In this chapter, we explored Subversion's runtime configuration system and other mechanisms by which users
can control those configurable behaviors. If you are a developer, though, the next chapter will take you one step
further. It describes how you can further customize your Subversion experience by writing your own software
against Subversion's libraries.

257

Chapter 8. Embedding Subversion

Subversion has a modular design: it's implemented as a collection of libraries written in C. Each library has a
well-defined purpose and application programming interface (API), and that interface is available not only for
Subversion itself to use, but for any software that wishes to embed or otherwise programmatically control Sub-
version. Additionally, Subversion's API is available not only to other C programs, but also to programs written
in higher-level languages such as Python, Perl, Java, and Ruby.

This chapter is for those who wish to interact with Subversion through its public API or its various language
bindings. If you wish to write robust wrapper scripts around Subversion functionality to simplify your own life,
are trying to develop more complex integrations between Subversion and other pieces of software, or just have
an interest in Subversion's various library modules and what they offer, this chapter is for you. If, however,
you don't foresee yourself participating with Subversion at such a level, feel free to skip this chapter with the
confidence that your experience as a Subversion user will not be affected.

Layered Library Design

Each of Subversion's core libraries can be said to exist in one of three main layers—the Repository layer, the
Repository Access (RA) layer, or the Client layer (see Figure 1, “Subversion's architecture” in the Preface). We
will examine these layers shortly, but first, let's briefly summarize Subversion's various libraries. For the sake of
consistency, we will refer to the libraries by their extensionless Unix library names (1ibsvn_ fs, libsvn wc,

mod_dav_svn, etc.).

libsvn_ client
Primary interface for client programs

libsvn_ delta
Tree and byte-stream differencing routines

libsvn_ diff
Contextual differencing and merging routines

libsvn_fs
Filesystem commons and module loader

libsvn_fs_base
The Berkeley DB filesystem backend

libsvn_fs_fs
The native filesystem (FSFS) backend

libsvn_ra
Repository Access commons and module loader

libsvn_ra_local
The local Repository Access module

libsvn_ra_neon
The WebDAYV Repository Access module

258

Embedding Subversion

libsvn_ra_serf
Another (experimental) WebDAV Repository Access module

libsvn_ra_svn
The custom protocol Repository Access module

libsvn_repos
Repository interface

libsvn_subr
Miscellaneous helpful subroutines

libsvn_we
The working copy management library

mod_ authz_svn
Apache authorization module for Subversion repositories access via WebDAV

mod_dav_svn
Apache module for mapping WebDAV operations to Subversion ones

The fact that the word “miscellaneous” appears only once in the previous list is a good sign. The Subversion
development team is serious about making sure that functionality lives in the right layer and libraries. Perhaps
the greatest advantage of the modular design is its lack of complexity from a developer's point of view. As a
developer, you can quickly formulate that kind of “big picture” that allows you to pinpoint the location of certain
pieces of functionality with relative ease.

Another benefit of modularity is the ability to replace a given module with a whole new library that implements
the same API without affecting the rest of the code base. In some sense, this happens within Subversion already.
The libsvn ra local, libsvn ra neon, libsvn ra serf, and libsvn ra svn libraries each imple-
ment the same interface, all working as plug-ins to 1ibsvn ra. And all four communicate with the Reposi-
tory layer—1ibsvn ra local connects to the repository directly; the other three do so over a network. The
libsvn fs base and libsvn fs fs libraries are another pair of libraries that implement the same func-
tionality in different ways—both are plug-ins to the common 1ibsvn fs library.

The client itself also highlights the benefits of modularity in the Subversion design. Subversion's
libsvn client libraryis a one-stop shop for most of the functionality necessary for designing a working Sub-
version client (see the section called “Client Layer”). So while the Subversion distribution provides only the svn
command-line client program, several third-party programs provide various forms of graphical client UIs. These
GUIs use the same APIs that the stock command-line client does. This type of modularity has played a large role
in the proliferation of available Subversion clients and IDE integrations and, by extension, to the tremendous
adoption rate of Subversion itself.

Repository Layer

When referring to Subversion's Repository layer, we're generally talking about two basic concepts—the ver-
sioned filesystem implementation (accessed via libsvn fs, and supported by its 1ibsvn fs base and
libsvn fs fs plug-ins), and the repository logic that wraps it (as implemented in 1ibsvn repos). These
libraries provide the storage and reporting mechanisms for the various revisions of your version-controlled data.
This layer is connected to the Client layer via the Repository Access layer, and is, from the perspective of the
Subversion user, the stuff at the “other end of the line.”

259

Embedding Subversion

The Subversion filesystem is not a kernel-level filesystem that one would install in an operating system (such as
the Linux ext2 or NTFS), but instead is a virtual filesystem. Rather than storing “files” and “directories” as real
files and directories (the kind you can navigate through using your favorite shell program), it uses one of two
available abstract storage backends—either a Berkeley DB database environment or a flat-file representation.
(To learn more about the two repository backends, see the section called “Choosing a Data Store”.) There has
even been considerable interest by the development community in giving future releases of Subversion the ability
to use other backend database systems, perhaps through a mechanism such as Open Database Connectivity
(ODBCQ). In fact, Google did something similar to this before launching the Google Code Project Hosting service:
they announced in mid-2006 that members of its open source team had written a new proprietary Subversion
filesystem plug-in that used Google's ultra-scalable Bigtable database for its storage.

The filesystem API exported by 1ibsvn fs contains the kinds of functionality you would expect from any oth-
er filesystem API—you can create and remove files and directories, copy and move them around, modify file
contents, and so on. It also has features that are not quite as common, such as the ability to add, modify, and
remove metadata (“properties”) on each file or directory. Furthermore, the Subversion filesystem is a versioning
filesystem, which means that as you make changes to your directory tree, Subversion remembers what your tree
looked like before those changes. And before the previous changes. And the previous ones. And so on, all the way
back through versioning time to (and just beyond) the moment you first started adding things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion commit transaction. The
following is a simplified general routine for modifying your filesystem:

1. Begin a Subversion commit transaction.
2. Make your changes (adds, deletes, property modifications, etc.).
3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as historical
artifacts. Each of these cycles generates a single new revision of your tree, and each revision is forever accessible
as an immutable snapshot of “the way things were.”

The Transaction Distraction

The notion of a Subversion transaction can become easily confused with the transaction support provided
by the underlying database itself, especially given the former's close proximity to the Berkeley DB database
code in 1ibsvn fs base. Both types of transaction exist to provide atomicity and isolation. In other
words, transactions give you the ability to perform a set of actions in an all-or-nothing fashion—either all
the actions in the set complete with success, or they all get treated as though none of them ever happened—
and in a way that does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of data
in the database itself (such as changing the contents of a table row). Subversion transactions are larger in
scope, encompassing higher-level operations such as making modifications to a set of files and directories
that are intended to be stored as the next revision of the filesystem tree. If that isn't confusing enough,
consider the fact that Subversion uses a database transaction during the creation of a Subversion transac-
tion (so that if the creation of a Subversion transaction fails, the database will look as though we had never
attempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system itself

is hidden almost entirely from view (as should be expected from a properly modularized library scheme).

260

Embedding Subversion

It is only when you start digging into the implementation of the filesystem itself that such things become
visible (or interesting).

Most of the functionality the filesystem interface provides deals with actions that occur on individual filesystem
paths. That is, from outside the filesystem, the primary mechanism for describing and accessing the individual
revisions of files and directories comes through the use of path strings such as / foo /bar, just as though you were
addressing files and directories through your favorite shell program. You add new files and directories by passing
their paths-to-be to the right API functions. You query for information about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify a file or directory in Subver-
sion. Think of a directory tree as a two-dimensional system, where a node's siblings represent a sort of left-and-
right motion, and navigating into the node's subdirectories represents a downward motion. Figure 8.1, “Files
and directories in two dimensions” shows a typical representation of a tree as exactly that.

Figure 8.1. Files and directories in two dimensions

[D
foo/

-

- |
bar baz hhq

BlE

The difference here is that the Subversion filesystem has a nifty third dimension that most filesystems do not

have—Time!" In the filesystem interface, nearly every function that has a path argument also expects a root
argument. This svn fs root t argument describes either a revision or a Subversion transaction (which is
simply a revision in the making) and provides that third dimension of context needed to understand the differ-
ence between / foo/bar in revision 32, and the same path as it exists in revision 98. Figure 8.2, “Versioning time
—the third dimension!” shows revision history as an added dimension to the Subversion filesystem universe.

'We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimension,
and we apologize for any emotional trauma induced by our assertion of a different theory.

261

Embedding Subversion

Figure 8.2. Versioning time—the third dimension!

Aswementioned earlier,the 1ibsvn fs APIlooksand feelslike any other filesystem, except that it has this won-
derful versioning capability. It was designed to be usable by any program interested in a versioning filesystem.
Not coincidentally, Subversion itself is interested in that functionality. But while the filesystem API should be suf-
ficient for basic file and directory versioning support, Subversion wants more—and thatiswhere 1ibsvn repos
comes in.

The Subversion repository library (1ibsvn repos) sits (logically speaking) atop the 1ibsvn fs API, provid-
ing additional functionality beyond that of the underlying versioned filesystem logic. It does not completely
wrap each and every filesystem function—only certain major steps in the general cycle of filesystem activity are
wrapped by the repository interface. Some of these include the creation and commit of Subversion transactions
and the modification of revision properties. These particular events are wrapped by the repository layer because
they have hooks associated with them. A repository hook system is not strictly related to implementing a ver-
sioning filesystem, so it lives in the repository wrapper library.

The hooks mechanism is but one of the reasons for the abstraction of a separate repository library from the rest
of the filesystem code. The 1ibsvn repos API provides several other important utilities to Subversion. These
include the abilities to:

« Create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem included in
that repository.

 Describe the differences between two filesystem trees.

» Query for the commit log messages associated with all (or some) of the revisions in which a set of files was
modified in the filesystem.

+ Generate a human-readable “dump” of the filesystem—a complete representation of the revisions in the
filesystem.

« Parse that dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer increased
functionality and configurable option support.

262

Embedding Subversion

Repository Access Layer

If the Subversion Repository layer is at “the other end of the line,” the Repository Access (RA) layer is the
line itself. Charged with marshaling data between the client libraries and the repository, this layer includes the
libsvn_ra module loader library, the RA modules themselves (which currently includes 1ibsvn ra neon,
libsvn ra local,libsvn ra serf,and libsvn ra_ svn), and any additional libraries needed by one or
more of those RA modules (such asthemod dav_svn Apachemoduleor 1ibsvn ra svn'sserver, svnserve).

Since Subversion uses URLSs to identify its repository resources, the protocol portion of the URL scheme (usually
file://,http://,https://,svn://,or svn+ssh://)is used to determine which RA module will handle
the communications. Each module registers a list of the protocols it knows how to “speak” so that the RA loader
can, at runtime, determine which module to use for the task at hand. You can determine which RA modules are
available to the Subversion command-line client, and what protocols they claim to support, by running svn --

version:

$ svn —--version
svn, version 1.7.0
compiled Nov 15 2011, 10:10:24

Copyright (C) 2011 The Apache Software Foundation.
This software consists of contributions made by many people; see the NOTICE
file for more information.

Subversion is open source software, see http://subversion.apache.org/
The following repository access (RA) modules are available:

* ra neon : Module for accessing a repository via WebDAV protocol using Neon.
- handles 'http' scheme
- handles 'https' scheme

* ra svn : Module for accessing a repository using the svn network protocol.
- with Cyrus SASL authentication
- handles 'svn' scheme

* ra local : Module for accessing a repository on local disk.
- handles 'file' scheme

* ra serf : Module for accessing a repository via WebDAV protocol using serf.
- handles 'http' scheme
- handles 'https' scheme

The public API exported by the RA layer contains functionality necessary for sending and receiving versioned
data to and from the repository. And each of the available RA plug-ins is able to perform that task using a specific
protocol—libsvn ra neonand libsvn ra serf speak HTTP/WebDAV (optionally using SSL encryption)
with an Apache HTTP Server that is running the mod dav_svn Subversion server module; 1ibsvn ra svn
speaks a custom network protocol with the svnserve program; and so on.

For those who wish to access a Subversion repository using still another protocol, that is precisely why the Repos-
itory Access layer is modularized! Developers can simply write a new library that implements the RA interface on
one side and communicates with the repository on the other. Your new library can use existing network protocols
or you can invent your own. You could use interprocess communication (IPC) calls, or—let's get crazy, shall we?
—you could even implement an email-based protocol. Subversion supplies the APIs; you supply the creativity.

263

Embedding Subversion

Client Layer

On the client side, the Subversion working copy is where all the action takes place. The bulk of functionality
implemented by the client-side libraries exists for the sole purpose of managing working copies—directories
full of files and other subdirectories that serve as a sort of local, editable “reflection” of one or more repository
locations—and propagating changes to and from the Repository Access layer.

Subversion's working copy library, 1ibsvn wc, is directly responsible for managing the data in the working
copies. To accomplish this, the library stores administrative information about the working copy within a special
subdirectory. This subdirectory, named . svn, is present in each working copy and contains various other files
and directories that record state and provide a private workspace for administrative action. For those familiar
with CVS, this . svn subdirectory is similar in purpose to the Cvs administrative directories found in CVS work-
ing copies.

The Subversion client library, 1ibsvn client, has the broadest responsibility; its job is to mingle the func-
tionality of the working copy library with that of the Repository Access layer, and then to provide the highest-lev-
el API to any application that wishes to perform general revision control actions. For example, the function
svn_client checkout () takes a URL as an argument. It passes this URL to the RA layer and opens an au-
thenticated session with a particular repository. It then asks the repository for a certain tree, and sends this tree
into the working copy library, which then writes a full working copy to disk (. svn directories and all).

The client library is designed to be used by any application. While the Subversion source code includes a standard
command-line client, it should be very easy to write any number of GUI clients on top of the client library. New
GUTIs (or any new client, really) for Subversion need not be clunky wrappers around the included command-line
client—they have full access via the 1ibsvn client API to the same functionality, data, and callback mecha-
nisms that the command-line client uses. In fact, the Subversion source code tree contains a small C program
(which you can find at tools/examples/minimal client.c)that exemplifies how to wield the Subversion
API to create a simple client program.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly witha 1ibsvn client instead of acting as a wrapper around
a command-line program? Besides simply being more efficient, it can be more correct as well. A com-
mand-line program (such as the one supplied with Subversion) that binds to the client library needs to ef-
fectively translate feedback and requested data bits from C types to some form of human-readable output.
This type of translation can be lossy. That is, the program may not display all of the information harvested
from the API or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access only
to already interpreted (and as we mentioned, likely incomplete) information, which it must again translate
into its representation format. With each layer of wrapping, the integrity of the original data is potentially
tainted more and more, much like the result of making a copy of a copy (of a copy...) of a favorite audio
or video cassette.

But the most compelling argument for binding directly to the APIs instead of wrapping other programs
is that the Subversion project makes compatibility promises regarding its APIs. Across minor versions of
those APIs (such as between 1.3 and 1.4), no function's prototype will change. In other words, you aren't
forced to update your program's source code simply because you've upgraded to a new version of Subver-

sion. Certain functions might be deprecated, but they still work, and this gives you a buffer of time to even-

264

Embedding Subversion

tually embrace the newer APIs. These kinds of compatibility promises do not exist for Subversion com-
mand-line program output, which is subject to change from release to release.

Using the APIs

Developing applications against the Subversion library APIs is fairly straightforward. Subversion is primarily

a set of C libraries, with header (.h) files that live in the subversion/include directory of the source tree.
These headers are copied into your system locations (e.g., /usr/local/include) when you build and install
Subversion itself from source. These headers represent the entirety of the functions and types meant to be ac-
cessible by users of the Subversion libraries. The Subversion developer community is meticulous about ensuring
that the public API is well documented—refer directly to the header files for that documentation.

When examining the public header files, the first thing you might notice is that Subversion's datatypes and
functions are namespace-protected. That is, every public Subversion symbol name begins with svn_, followed
by a short code for the library in which the symbol is defined (such as wc, client, £s, etc.), followed by a single
underscore (_), and then the rest of the symbol name. Semipublic functions (used among source files of a given
library but not by code outside that library, and found inside the library directories themselves) differ from this
naming scheme in that instead of a single underscore after the library code, they use a double underscore (_).
Functions that are private to a given source file have no special prefixing and are declared static. Of course,
a compiler isn't interested in these naming conventions, but they help to clarify the scope of a given function
or datatype.

Another good source of information about programming against the Subversion APIs is the project's own hack-
ing guidelines, which you can find at http://subversion.apache.org/docs/community-guide/. This document
contains useful information, which, while aimed at developers and would-be developers of Subversion itself, is
equally applicable to folks developing against Subversion as a set of third-party libraries.”

The Apache Portable Runtime Library

Along with Subversion's own datatypes, you will see many references to datatypes that begin with apr —symbols
from the Apache Portable Runtime (APR) library. APR is Apache's portability library, originally carved out of
its server code as an attempt to separate the OS-specific bits from the OS-independent portions of the code. The
result was a library that provides a generic API for performing operations that differ mildly—or wildly—from OS
to OS. While the Apache HTTP Server was obviously the first user of the APR library, the Subversion developers
immediately recognized the value of using APR as well. This means that there is practically no OS-specific code
in Subversion itself. Also, it means that the Subversion client compiles and runs anywhere that the Apache HTTP
Server does. Currently, this list includes all flavors of Unix, Win32, BeOS, OS/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating systems,> APR
gives Subversion immediate access to many custom datatypes, such as dynamic arrays and hash tables. Sub-
version uses these types extensively. But perhaps the most pervasive APR datatype, found in nearly every Sub-
version API prototype, is the apr pool t—the APR memory pool. Subversion uses pools internally for all its
memory allocation needs (unless an external library requires a different memory management mechanism for
data passed through its API),* and while a person coding against the Subversion APIs is not required to do the
same, she is required to provide pools to the API functions that need them. This means that users of the Sub-
version API must also link against APR, must call apr initialize () to initialize the APR subsystem, and

2After all, Subversion uses Subversion's APIs, too.
3Subversion uses ANSI system calls and datatypes as much as possible.
“Neon and Berkeley DB are examples of such libraries.

265

http://subversion.apache.org/docs/community-guide/

Embedding Subversion

then must create and manage pools for use with Subversion API calls, typically by using svn _pool create (),

svn _pool clear(),and svn pool destroy().

Programming with Memory Pools

Almost every developer who has used the C programming language has at some point sighed at the daunting
task of managing memory usage. Allocating enough memory to use, keeping track of those allocations,
freeing the memory when you no longer need it—these tasks can be quite complex. And of course, failure
to do those things properly can result in a program that crashes itself, or worse, crashes the computer.

Higher-level languages, on the other hand, either take the job of memory management away from you
completely or make it something you toy with only when doing extremely tight program optimization.
Languages such as Java and Python use garbage collection, allocating memory for objects when needed,
and automatically freeing that memory when the object is no longer in use.

APR provides a middle-ground approach called pool-based memory management. It allows the developer
to control memory usage at a lower resolution—per chunk (or “pool”) of memory, instead of per allocated
object. Rather than using malloc () and friends to allocate enough memory for a given object, you ask
APR to allocate the memory from a memory pool. When you're finished using the objects you've created in
the pool, you destroy the entire pool, effectively de-allocating the memory consumed by all the objects you
allocated from it. Thus, rather than keeping track of individual objects that need to be de-allocated, your
program simply considers the general lifetimes of those objects and allocates the objects in a pool whose
lifetime (the time between the pool's creation and its deletion) matches the object's needs.

Functions and Batons

To facilitate “streamy” (asynchronous) behavior and provide consumers of the Subversion C API with hooks for
handling information in customizable ways, many functions in the API accept pairs of parameters: a pointer to
a callback function, and a pointer to a blob of memory called a baton that carries context information for that
callback function. Batons are typically C structures with additional information that the callback function needs
but which is not given directly to the callback function by the driving API function.

URL and Path Requirements

With remote version control operation as the whole point of Subversion's existence, it makes sense that some
attention has been paid to internationalization (i18n) support. After all, while “remote” might mean “across the
office,” it could just as well mean “across the globe.” To facilitate this, all of Subversion's public interfaces that
accept path arguments expect those paths to be canonicalized—which is most easily accomplished by passing
them through svn dirent canonicalize () or svn uri canonicalize () (depending on whether you
are canonicalizing a local system path or a URL, respectively)—and encoded in UTF-8. This means, for exam-
ple, that any new client binary that drives the 1ibsvn client interface needs to first convert paths from the
locale-specific encoding to UTF-8 before passing those paths to the Subversion libraries, and then reconvert any
resultant output paths from Subversion back into the locale's encoding before using those paths for non-Subver-
sion purposes. Fortunately, Subversion provides a suite of functions (see subversion/include/svn utf.h)
that any program can use to do these conversions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of passing file:///
home/username/My File.txt as the URL of a file named My File.txt, you need to pass file:///
home/username/My%20File. txt. Again, Subversion supplies helper functions that your application can use
—svn path uri encode() and svn path uri decode (), for URI encoding and decoding, respectively.

266

Embedding Subversion

Using Languages Other Than C and C++

If you are interested in using the Subversion libraries in conjunction with something other than a C program—
say, a Python or Perl script—Subversion has some support for this via the Simplified Wrapper and Interface
Generator (SWIG). The SWIG bindings for Subversion are located in subversion/bindings/swig. They are
still maturing, but they are usable. These bindings allow you to call Subversion API functions indirectly, using
wrappers that translate the datatypes native to your scripting language into the datatypes needed by Subversion's
C libraries.

Significant efforts have been made toward creating functional SWIG-generated bindings for Python, Perl, and
Ruby. To some extent, the work done preparing the SWIG interface files for these languages is reusable in ef-
forts to generate bindings for other languages supported by SWIG (which include versions of C#, Guile, Java,
MzScheme, OCaml, PHP, and Tcl, among others). However, some extra programming is required to compensate
for complex APIs that SWIG needs some help translating between languages. For more information on SWIG
itself, see the project's web site at http://www.swig.org/.

Subversion also has language bindings for Java. The javahl bindings (located in subversion/bindings/java
in the Subversion source tree) aren't SWIG-based, but are instead a mixture of Java and hand-coded JNI. Javahl
covers most Subversion client-side APIs and is specifically targeted at implementors of Java-based Subversion
clients and IDE integrations.

Subversion's language bindings tend to lack the level of developer attention given to the core Subversion mod-
ules, but can generally be trusted as production-ready. A number of scripts and applications, alternative Sub-
version GUI clients, and other third-party tools are successfully using Subversion's language bindings today to
accomplish their Subversion integrations.

It's worth noting here that there are other options for interfacing with Subversion using other languages: alter-
native bindings for Subversion that aren't provided by the Subversion development community at all. There
are a couple of popular ones we feel are especially noteworthy. First, Barry Scott's PySVN bindings (http://
pysvn.tigris.org/) are a popular option for binding with Python. PySVN boasts of a more Pythonic interface than
the more C-like APIs provided by Subversion's own Python bindings. And if you're looking for a pure Java im-
plementation of Subversion, check out SVNKit (http://svnkit.com/), which is Subversion rewritten from the
ground up in Java.

SVNKit Versus javahl

In 2005, a small company called TMate announced the 1.0.0 release of JavaSVN—a pure Java implemen-
tation of Subversion. Since then, the project has been renamed to SVNKit (available at http://svnkit.com/)
and has seen great success as a provider of Subversion functionality to various Subversion clients, IDE
integrations, and other third-party tools.

The SVNK:it library is interesting in that, unlike the javahl library, it is not merely a wrapper around the
official Subversion core libraries. In fact, it shares no code with Subversion at all. But while it is easy to
confuse SVNKit with javahl, and easier still to not even realize which of these libraries you are using, folks
should be aware that SVNKit differs from javahl in some significant ways. First, while SVNKit is developed
as open source software just like Subversion, SVNKit's license is more restrictive than that of Subversion.’

Finally, by aiming to be a pure Java Subversion library, SVNKit is limited in which portions of Subversion

can be reasonably cloned while still keeping up with Subversion's releases. This has already happened once

5Redistributions in any form must be accompanied by information on how to obtain complete source code for the software that uses SVNKit and
any accompanying software that uses the software that uses SVNKit. See http://svnkit.com/license.html for details.

267

http://www.swig.org/
http://pysvn.tigris.org/
http://pysvn.tigris.org/
http://svnkit.com/
http://svnkit.com/
http://svnkit.com/license.html

Embedding Subversion

—SVNKit cannot access BDB-backed Subversion repositories via the £i1e:// protocol because there's no
pure Java implementation of Berkeley DB that is file-format-compatible with the native implementation

of that library.

That said, SVNKit has a well-established track record of reliability. And a pure Java solution is much more
robust in the face of programming errors—
a bug in the Subversion core libraries as accessed via javahl can bring down your entire Java Runtime
Environment. So, weigh the costs when choosing a Java-based Subversion implementation.

a bug in SVNKit might raise a catchable Java Exception, but

Code Samples

Example 8.1, “Using the repository layer” contains a code segment (written in C) that illustrates some of the
concepts we've been discussing. It uses both the repository and filesystem interfaces (as can be determined by
the prefixes svn_repos and svn fs of the function names, respectively) to create a new revision in which a
directory is added. You can see the use of an APR pool, which is passed around for memory allocation purposes.
Also, the code reveals a somewhat obscure fact about Subversion error handling—all Subversion errors must be

explicitly handled to avoid memory leakage (and in some cases, application failure).

Example 8.1. Using the repository layer

Subversion errors must be cleared (using svn_error clear())

else memory

P R R G

/* Convert a Subversion error into a simple boolean error code.
*
* NOTE:
* because they are allocated from the global pool,
& leaking occurs.
*/
#define INT ERR (expr)
do {
svn_error t * temperr = (expr);
if (_ temperr)
{
svn_error clear(_ temperr);
return 1;
}
return O;
} while (0)

/*
*
*
*

*

Create a new directory at the path
repository located at REPOS PATH.

POOL. This function will create a
NEW DIRECTORY. Return zero if the

successfully, nonzero otherwise.

*/

static int

NEW DIRECTORY in the Subversion
Perform all memory allocation in
new revision for the addition of

operation completes

make new directory(const char *repos path,

const char *new directory,

apr pool t *pool)

svn _error t *err;
svn repos t *repos;

svn fs t *fs;

268

Embedding Subversion

svn_revnum t youngest rev;
svn_fs_txn_t *txn;
svn fs root t *txn root;

const char *conflict str;

/* Open the repository located at REPOS PATH.
*/
INT ERR(svn_repos open (&repos, repos path, pool));

/* Get a pointer to the filesystem object that is stored in REPOS.
*/

fs = svn repos fs(repos);

/* Ask the filesystem to tell us the youngest revision that
* currently exists.
*/

INT ERR(svn_ fs youngest rev(&youngest rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST REV. We are
* less likely to have our later commit rejected as conflicting if we
* always try to make our changes against a copy of the latest snapshot
* of the filesystem tree.
*/
INT ERR(svn repos fs begin txn for commit2 (&txn, repos, youngest rev,

apr hash make (pool), pool)):;

/* Now that we have started a new Subversion transaction, get a root
* object that represents that transaction.
*/

INT ERR(svn fs txn root (&txn root, txn, pool));

/* Create our new directory under the transaction root, at the path
* NEW DIRECTORY.
*/

INT ERR(svn fs make dir (txn root, new directory, pool));

/* Commit the transaction, creating a new revision of the filesystem

* which includes our added directory path.

*/
err = svn_repos fs commit txn(&conflict str, repos,
&youngest rev, txn, pool);
if (! err)
{
/* No error? Excellent! Print a brief report of our success.

*/
printf ("Directory '%s' was successfully added as new revision "
"'$1d'.\n", new directory, youngest rev);
}
else if (err->apr err == SVN ERR FS CONFLICT)
{
/* Uh-oh. Our commit failed as the result of a conflict
* (someone else seems to have made changes to the same area

* of the filesystem that we tried to modify). Print an error

269

Embedding Subversion

* message.
*/
printf ("A conflict occurred at path '$s' while attempting "
"to add directory '%s' to the repository at '$s'.\n",

conflict str, new directory, repos path);
else

/* Some other error has occurred. Print an error message.
*/
printf ("An error occurred while attempting to add directory '%s' "
"to the repository at '%s'.\n",

new directory, repos path);

INT ERR(err);

Note that in Example 8.1, “Using the repository layer”, the code could just as easily have committed the transac-
tion using svn_fs commit txn (). But the filesystem API knows nothing about the repository library's hook
mechanism. If you want your Subversion repository to automatically perform some set of non-Subversion tasks
every time you commit a transaction (e.g., sending an email that describes all the changes made in that transac-
tion to your developer mailing list), you need to use the 1ibsvn repos-wrapped version of that function, which
adds the hook triggering functionality—in this case, svn repos fs commit txn (). (For more information
regarding Subversion's repository hooks, see the section called “Implementing Repository Hooks”.)

Now let's switch languages. Example 8.2, “Using the repository layer with Python” is a sample program that
uses Subversion's SWIG Python bindings to recursively crawl the youngest repository revision, and to print the
various paths reached during the crawl.

Example 8.2. Using the repository layer with Python

#!/usr/bin/python
"""Crawl a repository, printing versioned object path names."""

import sys
import os.path

import svn.fs, svn.core, svn.repos

def crawl filesystem dir (root, directory):
"""Recursively crawl DIRECTORY under ROOT in the filesystem, and return
a list of all the paths at or below DIRECTORY."""

Print the name of this path.
print directory + "/"

Get the directory entries for DIRECTORY.

entries = svn.fs.svn fs dir entries(root, directory)

Loop over the entries.

names = entries.keys/()

270

Embedding Subversion

for name in names:
Calculate the entry's full path.
full path = directory + '/' + name

If the entry is a directory, recurse. The recursion will return
a list with the entry and all its children, which we will add to
our running list of paths.
if svn.fs.svn fs is dir(root, full path):

crawl filesystem dir(root, full path)
elees

Else it's a file, so print its path here.

print full path

def crawl youngest (repos path) :
"""Open the repository at REPOS PATH, and recursively crawl its

youngest revision.
Open the repository at REPOS PATH, and get a reference to its
versioning filesystem.

repos _obj = svn.repos.svn_repos_open (repos path)

fs obj = svn.repos.svn repos fs(repos obj)

Query the current youngest revision.

youngest rev = svn.fs.svn fs youngest rev(fs obj)

Open a root object representing the youngest (HEAD) revision.

root obj = svn.fs.svn fs revision root (fs obj, youngest rev)

Do the recursive crawl.

crawl filesystem dir (root obj, "")
if name == " main ":
Check for sane usage.
if len(sys.argv) != 2:

sys.stderr.write ("Usage: %s REPOS_ PATH\n"

o)

% (os.path.basename (sys.argv[0])))

sys.exit (1)

Canonicalize the repository path.

repos_path = svn.core.svn dirent canonicalize(sys.argv([1l])

Do the real work.

crawl youngest (repos path)

This same program in C would need to deal with APR's memory pool system. But Python handles memory usage
automatically, and Subversion's Python bindings adhere to that convention. In C, you'd be working with custom
datatypes (such as those provided by the APR library) for representing the hash of entries and the list of paths,
but Python has hashes (called “dictionaries”) and lists as built-in datatypes, and it provides a rich collection of
functions for operating on those types. So SWIG (with the help of some customizations in Subversion's language
bindings layer) takes care of mapping those custom datatypes into the native datatypes of the target language.
This provides a more intuitive interface for users of that language.

271

Embedding Subversion

The Subversion Python bindings can be used for working copy operations, too. In the previous section of this
chapter, we mentioned the 1ibsvn client interface and how it exists for the sole purpose of simplifying the
process of writing a Subversion client. Example 8.3, “A Python status crawler” is a brief example of how that
library can be accessed via the SWIG Python bindings to re-create a scaled-down version of the svn status

command.

Example 8.3. A Python status crawler

#!/usr/bin/env python

"""Crawl a working copy directory,

import sys
import os.path
import getopt

import svn.core, svn.client, svn.wc

def generate status code (status) :

printing status information."""

"""Translate a status value into a single-character status code,

using the same logic as the Subversion command-line client."""

code map = { svn.
svn.
svn.
svn
svn.
svn.
svn.
svn
svn.
svn.
svn.
svn
svn.

}

wC

wcC.

wcC.

.WC.

wC

wcC.

wcC.

.WC.

wC

wcC.

wcC.

.WC.

wC

.svn_wc_status none
svn_wc_status normal
svn_wc status added
svn_wc_ status missing
.svn_wc_status_incomplete
svn_wc_status deleted
svn _wc status replaced
svn_wc status modified
.svn_wc_status_ conflicted
svn_wc_status obstructed
svn _wc status ignored

svn wc status external

.svn_wc_status unversioned

return code map.get (status, '?'")

def do_status (wc_path, verbose, prefix):

Build a client context baton.

ctx = svn.client.svn client create context ()

def status callback(path, status):

"""A callback function for svn client status."""

I4

v
4

Print the path, minus the bit that overlaps with the root of

the status crawl

text status =
prop_ status =

prefix text =

generate status code (status.text status)

generate status code (status.prop status)

v

1

if prefix is not None:

prefix te

print '$s%s%s

xt

= prefix + " "

o)

%s' % (prefix text, text status,

prop_ status,

path)

272

Embedding Subversion

Do the status crawl, using status callback() as our callback function.

revision = svn.core.svn opt revision t()

revision.type = svn.core.svn opt revision head

svn.client.svn client status2(wc path, revision, status callback,
svn.core.svn depth infinity, verbose,

0, 0, 1, ctx)

def usage and exit (errorcode) :
"""Print usage message, and exit with ERRORCODE."""
stream = errorcode and sys.stderr or sys.stdout
stream.write ("""Usage: %s OPTIONS WC-PATH

Print working copy status, optionally with a bit of prefix text.

Options:
—-help, -h : Show this usage message
--prefix ARG : Print ARG, followed by a space, before each line of output

--verbose, -v : Show all statuses, even uninteresting ones
""" % (os.path.basename (sys.argv[0])))
sys.exit (errorcode)
if name == ' main ':
Parse command-line options.
try:
opts, args = getopt.getopt(sys.argv[l:], "hv",
["help", "prefix=", "verbose"])
except getopt.GetoptError:
usage and exit (1)
verbose = 0
prefix = None
for opt, arg in opts:
if opt in ("-h", "--help"):
usage and exit (0)
if opt in ("--prefix"):
prefix = arg
if opt in ("-v", "--verbose"):
verbose = 1
if len(args) != 1:

usage and exit (2)

Canonicalize the working copy path.

wc path = svn.core.svn dirent canonicalize (args([0])

Do the real work.
try:

do status(wc path, verbose, prefix)
except svn.core.SubversionException, e:

sys.stderr.write ("Error (%d): %s\n" % (e.apr err, e.message))

sys.exit (1)

As was the case in Example 8.2, “Using the repository layer with Python”, this program is pool-free and uses,
for the most part, normal Python datatypes.

273

Embedding Subversion

(svn_dirent canonicalize() or svn uri canonicalize ()) before passing them to

Q Run user-provided paths through the appropriate canonicalization function

other API functions. Failure to do so can trigger assertions in the underlying Subversion C
library which translate into rather immediate and unceremonious program abortion.

Of particular interest to users of the Python flavor of Subversion's API is the implementation of callback func-
tions. As previously mentioned, Subversion's C API makes liberal use of the callback function/baton paradigm.
API functions which in C accept a function and baton pair only accept a callback function parameter in Python.
How, then, does the caller pass arbitrary context information to the callback function? In Python, this is done
by taking advantage of Python's scoping rules and default argument values. You can see this in action in Ex-
ample 8.3, “A Python status crawler”. The svn client status2 () function is given a callback function
(_status callback())butnobaton— status callback () getsaccess to the user-provided prefix string
because that variable falls into the scope of the function automatically.

Summary

One of Subversion's greatest features isn't something you get from running its command-line client or other
tools. It's the fact that Subversion was designed modularly and provides a stable, public API so that others—like
yourself, perhaps—can write custom software that drives Subversion's core logic.

In this chapter, we took a closer look at Subversion's architecture, examining its logical layers and describing
that public API, the very same API that Subversion's own layers use to communicate with each other. Many de-
velopers have found interesting uses for the Subversion API, from simple repository hook scripts, to integrations
between Subversion and some other application, to completely different version control systems. What unique
itch will you scratch with it?

274

Chapter 9. Subversion Complete
Reference

This chapter is intended to be a complete reference to using Subversion. It includes command summaries and
examples for all the command-line tools provided as part of the stock Subversion distribution, configuration
information for the Subversion server modules, and other information that lends itself to a reference format.

svn—Subversion Commmand-Line Client

svn is the official command-line client of Subversion. Its functionality is offered via a collection of task-specific
subcommands, most of which accept a number of options for fine-grained control of the program's behavior.

When using the svn program, subcommands and other non-option arguments must appear in a specified order
on the command line. Options, on the other hand, may appear anywhere on the command line (after the program
name, of course), and in general, their order is irrelevant. For example, all of the following are valid ways to use
svn status, and are interpreted in exactly the same way:

svn -vg status myfile
svn status -v -g myfile
svn -g status -v myfile

svn status -vgq myfile

v W W W »n

svn status myfile —-qv

The following sections describe each of the various subcommands and options provided by the svn com-
mand-line client program, including some examples of each subcommand's typical uses.

svn Options

While Subversion has different options for its subcommands, all options exist in a single namespace—that is,
each option is guaranteed to mean the roughly same thing regardless of the subcommand you use it with. For
example, --verbose (-v) always means “verbose output,” regardless of the subcommand you use it with.

The svn command-line client usually exits quickly with an error if you pass it an option which does not apply
to the specified subcommand. But as of Subversion 1.5, several of the options which apply to all—or nearly all—
of the subcommands have been deemed acceptable by all subcommands, even if they have no effect on some of
them. (This change was made primarily to improve the client's ability to called from custom wrapping scripts.)
These options appear grouped together in the command-line client's usage messages as global options, as can
be seen in the following bit of output:

S svn help upgrade
upgrade: Upgrade the metadata storage format for a working copy.

usage: upgrade [WCPATH...]

Local modifications are preserved.

275

Subversion Complete Reference

Valid options:

-q [--quiet] : print nothing, or only summary information

Global options:

—--username ARG : specify a username ARG

—--password ARG : specify a password ARG

--no-auth-cache : do not cache authentication tokens
--non-interactive : do no interactive prompting
-—-trust-server-cert : accept SSL server certificates from unknown

certificate authorities without prompting (but only

with '--non-interactive')
--config-dir ARG : read user configuration files from directory ARG
--config-option ARG : set user configuration option in the format:

FILE:SECTION:OPTION=[VALUE]
For example:

servers:global:http-library=serf

svn subcommands recognize the following global options:

--config-dir DIR
Instructs Subversion to read configuration information from the specified directory instead of the default
location (. subversion in the user's home directory).

--config-option CONFSPEC

Sets, for the duration of the command, the value of a runtime configuration option. CONFSPEC is a string
which specifies the configuration option namespace, name and value that you'd like to assign, formatted
as FILE:SECTION:OPTION=[VALUE]. In this syntax, FILE and SECTION are the runtime configuration file
(either config or servers) and the section thereof, respectively, which contain the option whose value
you wish to change. OPTION is, of course, the option itself, and VALUE the value (if any) you wish to assign
to the option. For example, to temporarily disable the use of the automatic property setting feature, use
--config-option=config:miscellany:enable-auto-props=no.You can use this option multiple
times to change multiple option values simultaneously.

--no-auth-cache
Prevents caching of authentication information (e.g., username and password) in the Subversion runtime
configuration directories.

--non-interactive
Disables all interactive prompting. Some examples of interactive prompting include requests for authenti-
cation credentials and conflict resolution decisions. This is useful if you're running Subversion inside an
automated script and it's more appropriate to have Subversion fail than to prompt for more information.

--password PASSWD
Specifies the password to use when authenticating against a Subversion server. If not provided, or if incor-
rect, Subversion will prompt you for this information as needed.

-—trust-server-cert
When used with --non-interactive, instructs Subversion to accept SSL server certificates issued by
unknown certificate authorities without first prompting the user. For security's sake, you should use this
option only when the integrity of the remote server and the network path between it and your client is known
to be trustworthy.

276

Subversion Complete Reference

—--username NAME
Specifies the username to use when authenticating against a Subversion server. If not provided, or if incor-
rect, Subversion will prompt you for this information as needed.

The rest of the options apply and are accepted by only a subset of the subcommand. They are as follows:

—-—accept ACTION
Specifies an action for automatic conflict resolution, disabling the interactive prompts which ask the user
how to handle each conflict as it is noticed. Though which of the specific actions are applicable differs de-
pending on which subcommand is in use, Subversion supports the following long (and short) values for
ACTION:

postpone (p)
Take no resolution action at all and instead allow the conflicts to be recorded for future resolution.

edit (e)
Open each conflicted file in a text editor for manual resolution of line-based conflicts.

launch (1)
Launch an interactive merge conflict resolution tool for each conflicted file.

base
Choose the file that was the (unmodified) BASE revision before you tried to integrate changes from the
server into your working copy.

working
Assuming that you've manually handled the conflict resolution, choose the version of the file as it cur-
rently stands in your working copy.

mine-full (mf)
Resolve conflicted files by preserving all local modifications and discarding all changes fetched from the
server during the operation which caused the conflict.

theirs-full (tf)
Resolve conflicted files by discarding all local modifications and integrating all changes fetched from the
server during the operation which caused the conflict.

mine-conflict (mc)
Resolve conflicted files by preferring local modifications over the changes fetched from the server in
conflicting regions of each file's content.

theirs-conflict (tc)
Resolve conflicted files by preferring the changes fetched from the server over local modifications in
conflicting regions of each file's content.

Consult the output of svn help SUBCOMMAND to see exactly which actions are supported by the specific
subcommand of interest.

--allow-mixed-revisions
Disables the verification—performed by default by svn merge as of Subversion 1.7—that the target of a
merge operation and all of its children are at a uniform revision. While merging into a single-revision work-
ing copy target is the recommended best practice, this option may be used to permit merges into mixed-
revision working copies as necessary.

277

Subversion Complete Reference

—-—auto-props
Enables automatic property assignment (per runtime configuration rules), overriding the enable-au-
to-props runtime configuration directive.

--change (-c) ARG
Perform the requested operation using a specific “change”. Generally speaking, this option is syntactic sugar
for -r ARG-1:ARG. Some subcommands permit a comma-separated list of revision number arguments
(e.g., -c ARGI1,ARG2,ARG3). Alternatively, you can pr